Abstract:The rapid evolution of multimodal foundation models has led to significant advancements in cross-modal understanding and generation across diverse modalities, including text, images, audio, and video. However, these models remain susceptible to jailbreak attacks, which can bypass built-in safety mechanisms and induce the production of potentially harmful content. Consequently, understanding the methods of jailbreak attacks and existing defense mechanisms is essential to ensure the safe deployment of multimodal generative models in real-world scenarios, particularly in security-sensitive applications. To provide comprehensive insight into this topic, this survey reviews jailbreak and defense in multimodal generative models. First, given the generalized lifecycle of multimodal jailbreak, we systematically explore attacks and corresponding defense strategies across four levels: input, encoder, generator, and output. Based on this analysis, we present a detailed taxonomy of attack methods, defense mechanisms, and evaluation frameworks specific to multimodal generative models. Additionally, we cover a wide range of input-output configurations, including modalities such as Any-to-Text, Any-to-Vision, and Any-to-Any within generative systems. Finally, we highlight current research challenges and propose potential directions for future research.The open-source repository corresponding to this work can be found at https://github.com/liuxuannan/Awesome-Multimodal-Jailbreak.
Abstract:Current multimodal misinformation detection (MMD) methods often assume a single source and type of forgery for each sample, which is insufficient for real-world scenarios where multiple forgery sources coexist. The lack of a benchmark for mixed-source misinformation has hindered progress in this field. To address this, we introduce MMFakeBench, the first comprehensive benchmark for mixed-source MMD. MMFakeBench includes 3 critical sources: textual veracity distortion, visual veracity distortion, and cross-modal consistency distortion, along with 12 sub-categories of misinformation forgery types. We further conduct an extensive evaluation of 6 prevalent detection methods and 15 large vision-language models (LVLMs) on MMFakeBench under a zero-shot setting. The results indicate that current methods struggle under this challenging and realistic mixed-source MMD setting. Additionally, we propose an innovative unified framework, which integrates rationales, actions, and tool-use capabilities of LVLM agents, significantly enhancing accuracy and generalization. We believe this study will catalyze future research into more realistic mixed-source multimodal misinformation and provide a fair evaluation of misinformation detection methods.
Abstract:Flexible and accurate drag-based editing is a challenging task that has recently garnered significant attention. Current methods typically model this problem as automatically learning ``how to drag'' through point dragging and often produce one deterministic estimation, which presents two key limitations: 1) Overlooking the inherently ill-posed nature of drag-based editing, where multiple results may correspond to a given input, as illustrated in Fig.1; 2) Ignoring the constraint of image quality, which may lead to unexpected distortion. To alleviate this, we propose LucidDrag, which shifts the focus from ``how to drag'' to a paradigm of ``what-then-how''. LucidDrag comprises an intention reasoner and a collaborative guidance sampling mechanism. The former infers several optimal editing strategies, identifying what content and what semantic direction to be edited. Based on the former, the latter addresses "how to drag" by collaboratively integrating existing editing guidance with the newly proposed semantic guidance and quality guidance. Specifically, semantic guidance is derived by establishing a semantic editing direction based on reasoned intentions, while quality guidance is achieved through classifier guidance using an image fidelity discriminator. Both qualitative and quantitative comparisons demonstrate the superiority of LucidDrag over previous methods. The code will be released.
Abstract:The massive generation of multimodal fake news exhibits substantial distribution discrepancies, prompting the need for generalized detectors. However, the insulated nature of training within specific domains restricts the capability of classical detectors to obtain open-world facts. In this paper, we propose FakeNewsGPT4, a novel framework that augments Large Vision-Language Models (LVLMs) with forgery-specific knowledge for manipulation reasoning while inheriting extensive world knowledge as complementary. Knowledge augmentation in FakeNewsGPT4 involves acquiring two types of forgery-specific knowledge, i.e., semantic correlation and artifact trace, and merging them into LVLMs. Specifically, we design a multi-level cross-modal reasoning module that establishes interactions across modalities for extracting semantic correlations. Concurrently, a dual-branch fine-grained verification module is presented to comprehend localized details to encode artifact traces. The generated knowledge is translated into refined embeddings compatible with LVLMs. We also incorporate candidate answer heuristics and soft prompts to enhance input informativeness. Extensive experiments on the public benchmark demonstrate that FakeNewsGPT4 achieves superior cross-domain performance compared to previous methods. Code will be available.
Abstract:Existing face aging methods often focus on modeling either texture aging or using an entangled shape-texture representation to achieve face aging. However, shape and texture are two distinct factors that mutually affect the human face aging process. In this paper, we propose 3D-STD, a novel 3D-aware Shape-Texture Disentangled face aging network that explicitly disentangles the facial image into shape and texture representations using 3D face reconstruction. Additionally, to facilitate high-fidelity texture synthesis, we propose a novel texture generation method based on Empirical Mode Decomposition (EMD). Extensive qualitative and quantitative experiments show that our method achieves state-of-the-art performance in terms of shape and texture transformation. Moreover, our method supports producing plausible 3D face aging results, which is rarely accomplished by current methods.
Abstract:With extensive face images being shared on social media, there has been a notable escalation in privacy concerns. In this paper, we propose AdvCloak, an innovative framework for privacy protection using generative models. AdvCloak is designed to automatically customize class-wise adversarial masks that can maintain superior image-level naturalness while providing enhanced feature-level generalization ability. Specifically, AdvCloak sequentially optimizes the generative adversarial networks by employing a two-stage training strategy. This strategy initially focuses on adapting the masks to the unique individual faces via image-specific training and then enhances their feature-level generalization ability to diverse facial variations of individuals via person-specific training. To fully utilize the limited training data, we combine AdvCloak with several general geometric modeling methods, to better describe the feature subspace of source identities. Extensive quantitative and qualitative evaluations on both common and celebrity datasets demonstrate that AdvCloak outperforms existing state-of-the-art methods in terms of efficiency and effectiveness.
Abstract:Stylized text-to-image generation focuses on creating images from textual descriptions while adhering to a style specified by a few reference images. However, subtle style variations within different reference images can hinder the model from accurately learning the target style. In this paper, we propose InstaStyle, a novel approach that excels in generating high-fidelity stylized images with only a single reference image. Our approach is based on the finding that the inversion noise from a stylized reference image inherently carries the style signal, as evidenced by their non-zero signal-to-noise ratio. We employ DDIM inversion to extract this noise from the reference image and leverage a diffusion model to generate new stylized images from the ``style" noise. Additionally, the inherent ambiguity and bias of textual prompts impede the precise conveying of style. To address this, we introduce a learnable style token via prompt refinement, which enhances the accuracy of the style description for the reference image. Qualitative and quantitative experimental results demonstrate that InstaStyle achieves superior performance compared to current benchmarks. Furthermore, our approach also showcases its capability in the creative task of style combination with mixed inversion noise.
Abstract:Point cloud analysis faces computational system overhead, limiting its application on mobile or edge devices. Directly employing small models may result in a significant drop in performance since it is difficult for a small model to adequately capture local structure and global shape information simultaneously, which are essential clues for point cloud analysis. This paper explores feature distillation for lightweight point cloud models. To mitigate the semantic gap between the lightweight student and the cumbersome teacher, we propose bidirectional knowledge reconfiguration (BKR) to distill informative contextual knowledge from the teacher to the student. Specifically, a top-down knowledge reconfiguration and a bottom-up knowledge reconfiguration are developed to inherit diverse local structure information and consistent global shape knowledge from the teacher, respectively. However, due to the farthest point sampling in most point cloud models, the intermediate features between teacher and student are misaligned, deteriorating the feature distillation performance. To eliminate it, we propose a feature mover's distance (FMD) loss based on optimal transportation, which can measure the distance between unordered point cloud features effectively. Extensive experiments conducted on shape classification, part segmentation, and semantic segmentation benchmarks demonstrate the universality and superiority of our method.
Abstract:Although there have been considerable research efforts on controllable facial image editing, the desirable interactive setting where the users can interact with the system to adjust their requirements dynamically hasn't been well explored. This paper focuses on facial image editing via dialogue and introduces a new benchmark dataset, Multi-turn Interactive Image Editing (I2Edit), for evaluating image editing quality and interaction ability in real-world interactive facial editing scenarios. The dataset is constructed upon the CelebA-HQ dataset with images annotated with a multi-turn dialogue that corresponds to the user editing requirements. I2Edit is challenging, as it needs to 1) track the dynamically updated user requirements and edit the images accordingly, as well as 2) generate the appropriate natural language response to communicate with the user. To address these challenges, we propose a framework consisting of a dialogue module and an image editing module. The former is for user edit requirements tracking and generating the corresponding indicative responses, while the latter edits the images conditioned on the tracked user edit requirements. In contrast to previous works that simply treat multi-turn interaction as a sequence of single-turn interactions, we extract the user edit requirements from the whole dialogue history instead of the current single turn. The extracted global user edit requirements enable us to directly edit the input raw image to avoid error accumulation and attribute forgetting issues. Extensive quantitative and qualitative experiments on the I2Edit dataset demonstrate the advantage of our proposed framework over the previous single-turn methods. We believe our new dataset could serve as a valuable resource to push forward the exploration of real-world, complex interactive image editing. Code and data will be made public.