Abstract:The massive generation of multimodal fake news exhibits substantial distribution discrepancies, prompting the need for generalized detectors. However, the insulated nature of training within specific domains restricts the capability of classical detectors to obtain open-world facts. In this paper, we propose FakeNewsGPT4, a novel framework that augments Large Vision-Language Models (LVLMs) with forgery-specific knowledge for manipulation reasoning while inheriting extensive world knowledge as complementary. Knowledge augmentation in FakeNewsGPT4 involves acquiring two types of forgery-specific knowledge, i.e., semantic correlation and artifact trace, and merging them into LVLMs. Specifically, we design a multi-level cross-modal reasoning module that establishes interactions across modalities for extracting semantic correlations. Concurrently, a dual-branch fine-grained verification module is presented to comprehend localized details to encode artifact traces. The generated knowledge is translated into refined embeddings compatible with LVLMs. We also incorporate candidate answer heuristics and soft prompts to enhance input informativeness. Extensive experiments on the public benchmark demonstrate that FakeNewsGPT4 achieves superior cross-domain performance compared to previous methods. Code will be available.
Abstract:Although face recognition has made impressive progress in recent years, we ignore the racial bias of the recognition system when we pursue a high level of accuracy. Previous work found that for different races, face recognition networks focus on different facial regions, and the sensitive regions of darker-skinned people are much smaller. Based on this discovery, we propose a new de-bias method based on gradient attention, called Gradient Attention Balance Network (GABN). Specifically, we use the gradient attention map (GAM) of the face recognition network to track the sensitive facial regions and make the GAMs of different races tend to be consistent through adversarial learning. This method mitigates the bias by making the network focus on similar facial regions. In addition, we also use masks to erase the Top-N sensitive facial regions, forcing the network to allocate its attention to a larger facial region. This method expands the sensitive region of darker-skinned people and further reduces the gap between GAM of darker-skinned people and GAM of Caucasians. Extensive experiments show that GABN successfully mitigates racial bias in face recognition and learns more balanced performance for people of different races.
Abstract:Due to the lack of diversity of datasets, the generalization ability of the pose estimator is poor. To solve this problem, we propose a pose augmentation solution via DH forward kinematics model, which we call DH-AUG. We observe that the previous work is all based on single-frame pose augmentation, if it is directly applied to video pose estimator, there will be several previously ignored problems: (i) angle ambiguity in bone rotation (multiple solutions); (ii) the generated skeleton video lacks movement continuity. To solve these problems, we propose a special generator based on DH forward kinematics model, which is called DH-generator. Extensive experiments demonstrate that DH-AUG can greatly increase the generalization ability of the video pose estimator. In addition, when applied to a single-frame 3D pose estimator, our method outperforms the previous best pose augmentation method. The source code has been released at https://github.com/hlz0606/DH-AUG-DH-Forward-Kinematics-Model-Driven-Augmentation-for-3D-Human-Pose-Estimation.
Abstract:Convolutional neural network based face forgery detection methods have achieved remarkable results during training, but struggled to maintain comparable performance during testing. We observe that the detector is prone to focus more on content information than artifact traces, suggesting that the detector is sensitive to the intrinsic bias of the dataset, which leads to severe overfitting. Motivated by this key observation, we design an easily embeddable disentanglement framework for content information removal, and further propose a Content Consistency Constraint (C2C) and a Global Representation Contrastive Constraint (GRCC) to enhance the independence of disentangled features. Furthermore, we cleverly construct two unbalanced datasets to investigate the impact of the content bias. Extensive visualizations and experiments demonstrate that our framework can not only ignore the interference of content information, but also guide the detector to mine suspicious artifact traces and achieve competitive performance.
Abstract:With the emergence of GAN, face forgery technologies have been heavily abused. Achieving accurate face forgery detection is imminent. Inspired by remote photoplethysmography (rPPG) that PPG signal corresponds to the periodic change of skin color caused by heartbeat in face videos, we observe that despite the inevitable loss of PPG signal during the forgery process, there is still a mixture of PPG signals in the forgery video with a unique rhythmic pattern depending on its generation method. Motivated by this key observation, we propose a framework for face forgery detection and categorization consisting of: 1) a Spatial-Temporal Filtering Network (STFNet) for PPG signals filtering, and 2) a Spatial-Temporal Interaction Network (STINet) for constraint and interaction of PPG signals. Moreover, with insight into the generation of forgery methods, we further propose intra-source and inter-source blending to boost the performance of the framework. Overall, extensive experiments have proved the superiority of our method.