Abstract:Conditional independence (CI) testing is a fundamental task in modern statistics and machine learning. The conditional randomization test (CRT) was recently introduced to test whether two random variables, $X$ and $Y$, are conditionally independent given a potentially high-dimensional set of random variables, $Z$. The CRT operates exceptionally well under the assumption that the conditional distribution $X|Z$ is known. However, since this distribution is typically unknown in practice, accurately approximating it becomes crucial. In this paper, we propose using conditional diffusion models (CDMs) to learn the distribution of $X|Z$. Theoretically and empirically, it is shown that CDMs closely approximate the true conditional distribution. Furthermore, CDMs offer a more accurate approximation of $X|Z$ compared to GANs, potentially leading to a CRT that performs better than those based on GANs. To accommodate complex dependency structures, we utilize a computationally efficient classifier-based conditional mutual information (CMI) estimator as our test statistic. The proposed testing procedure performs effectively without requiring assumptions about specific distribution forms or feature dependencies, and is capable of handling mixed-type conditioning sets that include both continuous and discrete variables. Theoretical analysis shows that our proposed test achieves a valid control of the type I error. A series of experiments on synthetic data demonstrates that our new test effectively controls both type-I and type-II errors, even in high dimensional scenarios.
Abstract:This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks. With the increasing integration of LLMs in critical sectors such as healthcare, finance, and public administration, ensuring these models are resilient to adversarial attacks is vital for preventing misuse and upholding ethical standards. This competition focused on two distinct tracks designed to evaluate and enhance the robustness of LLM security frameworks. Track 1 tasked participants with developing automated methods to probe LLM vulnerabilities by eliciting undesirable responses, effectively testing the limits of existing safety protocols within LLMs. Participants were challenged to devise techniques that could bypass content safeguards across a diverse array of scenarios, from offensive language to misinformation and illegal activities. Through this process, Track 1 aimed to deepen the understanding of LLM vulnerabilities and provide insights for creating more resilient models.
Abstract:In this paper, we aim to address a significant challenge in the field of missing data imputation: identifying and leveraging the interdependencies among features to enhance missing data imputation for tabular data. We introduce a novel framework named the Bipartite and Complete Directed Graph Neural Network (BCGNN). Within BCGNN, observations and features are differentiated as two distinct node types, and the values of observed features are converted into attributed edges linking them. The bipartite segment of our framework inductively learns embedding representations for nodes, efficiently utilizing the comprehensive information encapsulated in the attributed edges. In parallel, the complete directed graph segment adeptly outlines and communicates the complex interdependencies among features. When compared to contemporary leading imputation methodologies, BCGNN consistently outperforms them, achieving a noteworthy average reduction of 15% in mean absolute error for feature imputation tasks under different missing mechanisms. Our extensive experimental investigation confirms that an in-depth grasp of the interdependence structure substantially enhances the model's feature embedding ability. We also highlight the model's superior performance in label prediction tasks involving missing data, and its formidable ability to generalize to unseen data points.
Abstract:2D face recognition encounters challenges in unconstrained environments due to varying illumination, occlusion, and pose. Recent studies focus on RGB-D face recognition to improve robustness by incorporating depth information. However, collecting sufficient paired RGB-D training data is expensive and time-consuming, hindering wide deployment. In this work, we first construct a diverse depth dataset generated by 3D Morphable Models for depth model pre-training. Then, we propose a domain-independent pre-training framework that utilizes readily available pre-trained RGB and depth models to separately perform face recognition without needing additional paired data for retraining. To seamlessly integrate the two distinct networks and harness the complementary benefits of RGB and depth information for improved accuracy, we propose an innovative Adaptive Confidence Weighting (ACW). This mechanism is designed to learn confidence estimates for each modality to achieve modality fusion at the score level. Our method is simple and lightweight, only requiring ACW training beyond the backbone models. Experiments on multiple public RGB-D face recognition benchmarks demonstrate state-of-the-art performance surpassing previous methods based on depth estimation and feature fusion, validating the efficacy of our approach.
Abstract:In recent years, large language models (LLMs) have demonstrated notable success across various tasks, but the trustworthiness of LLMs is still an open problem. One specific threat is the potential to generate toxic or harmful responses. Attackers can craft adversarial prompts that induce harmful responses from LLMs. In this work, we pioneer a theoretical foundation in LLMs security by identifying bias vulnerabilities within the safety fine-tuning and design a black-box jailbreak method named DRA (Disguise and Reconstruction Attack), which conceals harmful instructions through disguise and prompts the model to reconstruct the original harmful instruction within its completion. We evaluate DRA across various open-source and close-source models, showcasing state-of-the-art jailbreak success rates and attack efficiency. Notably, DRA boasts a 90\% attack success rate on LLM chatbots GPT-4.
Abstract:Although face recognition has made impressive progress in recent years, we ignore the racial bias of the recognition system when we pursue a high level of accuracy. Previous work found that for different races, face recognition networks focus on different facial regions, and the sensitive regions of darker-skinned people are much smaller. Based on this discovery, we propose a new de-bias method based on gradient attention, called Gradient Attention Balance Network (GABN). Specifically, we use the gradient attention map (GAM) of the face recognition network to track the sensitive facial regions and make the GAMs of different races tend to be consistent through adversarial learning. This method mitigates the bias by making the network focus on similar facial regions. In addition, we also use masks to erase the Top-N sensitive facial regions, forcing the network to allocate its attention to a larger facial region. This method expands the sensitive region of darker-skinned people and further reduces the gap between GAM of darker-skinned people and GAM of Caucasians. Extensive experiments show that GABN successfully mitigates racial bias in face recognition and learns more balanced performance for people of different races.
Abstract:Although deep learning has significantly improved Face Recognition (FR), dramatic performance deterioration may occur when processing Low Resolution (LR) faces. To alleviate this, approaches based on unified feature space are proposed with the sacrifice under High Resolution (HR) circumstances. To deal with the huge domain gap between HR and LR domains and achieve the best on both domains, we first took a closer look at the impacts of several resolution augmentations and then analyzed the difficulty of LR samples from the perspective of the model gradient produced by different resolution samples. Besides, we also find that the introduction of some resolutions could help the learning of lower resolutions. Based on these, we divide the LR samples into three difficulties according to the resolution and propose a more effective Multi-Resolution Augmentation. Then, due to the rapidly increasing domain gap as the resolution decreases, we carefully design a novel and effective metric loss based on a LogExp distance function that provides decent gradients to prevent oscillation near the convergence point or tolerance to small distance errors; it could also dynamically adjust the penalty for errors in different dimensions, allowing for more optimization of dimensions with large errors. Combining these two insights, our model could learn more general knowledge in a wide resolution range of images and balanced results can be achieved by our extremely simple framework. Moreover, the augmentations and metrics are the cornerstones of LRFR, so our method could be considered a new baseline for the LRFR task. Experiments on the LRFR datasets: SCface, XQLFW, and large-scale LRFR dataset: TinyFace demonstrate the effectiveness of our methods, while the degradation on HRFR datasets is significantly reduced.