Abstract:Fine-grained classification of whole slide images (WSIs) is essential in precision oncology, enabling precise cancer diagnosis and personalized treatment strategies. The core of this task involves distinguishing subtle morphological variations within the same broad category of gigapixel-resolution images, which presents a significant challenge. While the multi-instance learning (MIL) paradigm alleviates the computational burden of WSIs, existing MIL methods often overlook hierarchical label correlations, treating fine-grained classification as a flat multi-class classification task. To overcome these limitations, we introduce a novel hierarchical multi-instance learning (HMIL) framework. By facilitating on the hierarchical alignment of inherent relationships between different hierarchy of labels at instance and bag level, our approach provides a more structured and informative learning process. Specifically, HMIL incorporates a class-wise attention mechanism that aligns hierarchical information at both the instance and bag levels. Furthermore, we introduce supervised contrastive learning to enhance the discriminative capability for fine-grained classification and a curriculum-based dynamic weighting module to adaptively balance the hierarchical feature during training. Extensive experiments on our large-scale cytology cervical cancer (CCC) dataset and two public histology datasets, BRACS and PANDA, demonstrate the state-of-the-art class-wise and overall performance of our HMIL framework. Our source code is available at https://github.com/ChengJin-git/HMIL.
Abstract:The increasing demand for transparent and reliable models, particularly in high-stakes decision-making areas such as medical image analysis, has led to the emergence of eXplainable Artificial Intelligence (XAI). Post-hoc XAI techniques, which aim to explain black-box models after training, have been controversial in recent works concerning their fidelity to the models' predictions. In contrast, Self-eXplainable AI (S-XAI) offers a compelling alternative by incorporating explainability directly into the training process of deep learning models. This approach allows models to generate inherent explanations that are closely aligned with their internal decision-making processes. Such enhanced transparency significantly supports the trustworthiness, robustness, and accountability of AI systems in real-world medical applications. To facilitate the development of S-XAI methods for medical image analysis, this survey presents an comprehensive review across various image modalities and clinical applications. It covers more than 200 papers from three key perspectives: 1) input explainability through the integration of explainable feature engineering and knowledge graph, 2) model explainability via attention-based learning, concept-based learning, and prototype-based learning, and 3) output explainability by providing counterfactual explanation and textual explanation. Additionally, this paper outlines the desired characteristics of explainability and existing evaluation methods for assessing explanation quality. Finally, it discusses the major challenges and future research directions in developing S-XAI for medical image analysis.
Abstract:Radiology reports often remain incomprehensible to patients, undermining patient-centered care. We present ReXplain (Radiology eXplanation), an innovative AI-driven system that generates patient-friendly video reports for radiology findings. ReXplain uniquely integrates a large language model for text simplification, an image segmentation model for anatomical region identification, and an avatar generation tool, producing comprehensive explanations with plain language, highlighted imagery, and 3D organ renderings. Our proof-of-concept study with five board-certified radiologists indicates that ReXplain could accurately deliver radiological information and effectively simulate one-on-one consultations. This work demonstrates a new paradigm in AI-assisted medical communication, potentially improving patient engagement and satisfaction in radiology care, and opens new avenues for research in multimodal medical communication.
Abstract:Capitalizing on image-level pre-trained models for various downstream tasks has recently emerged with promising performance. However, the paradigm of "image pre-training followed by video fine-tuning" for high-dimensional video data inevitably poses significant performance bottlenecks. Furthermore, in the medical domain, many surgical video tasks encounter additional challenges posed by the limited availability of video data and the necessity for comprehensive spatial-temporal modeling. Recently, Parameter-Efficient Image-to-Video Transfer Learning has emerged as an efficient and effective paradigm for video action recognition tasks, which employs image-level pre-trained models with promising feature transferability and involves cross-modality temporal modeling with minimal fine-tuning. Nevertheless, the effectiveness and generalizability of this paradigm within intricate surgical domain remain unexplored. In this paper, we delve into a novel problem of efficiently adapting image-level pre-trained models to specialize in fine-grained surgical phase recognition, termed as Parameter-Efficient Image-to-Surgical-Video Transfer Learning. Firstly, we develop a parameter-efficient transfer learning benchmark SurgPETL for surgical phase recognition, and conduct extensive experiments with three advanced methods based on ViTs of two distinct scales pre-trained on five large-scale natural and medical datasets. Then, we introduce the Spatial-Temporal Adaptation module, integrating a standard spatial adapter with a novel temporal adapter to capture detailed spatial features and establish connections across temporal sequences for robust spatial-temporal modeling. Extensive experiments on three challenging datasets spanning various surgical procedures demonstrate the effectiveness of SurgPETL with STA.
Abstract:Existing state-of-the-art methods for surgical phase recognition either rely on the extraction of spatial-temporal features at a short-range temporal resolution or adopt the sequential extraction of the spatial and temporal features across the entire temporal resolution. However, these methods have limitations in modeling spatial-temporal dependency and addressing spatial-temporal redundancy: 1) These methods fail to effectively model spatial-temporal dependency, due to the lack of long-range information or joint spatial-temporal modeling. 2) These methods utilize dense spatial features across the entire temporal resolution, resulting in significant spatial-temporal redundancy. In this paper, we propose the Surgical Transformer (Surgformer) to address the issues of spatial-temporal modeling and redundancy in an end-to-end manner, which employs divided spatial-temporal attention and takes a limited set of sparse frames as input. Moreover, we propose a novel Hierarchical Temporal Attention (HTA) to capture both global and local information within varied temporal resolutions from a target frame-centric perspective. Distinct from conventional temporal attention that primarily emphasizes dense long-range similarity, HTA not only captures long-term information but also considers local latent consistency among informative frames. HTA then employs pyramid feature aggregation to effectively utilize temporal information across diverse temporal resolutions, thereby enhancing the overall temporal representation. Extensive experiments on two challenging benchmark datasets verify that our proposed Surgformer performs favorably against the state-of-the-art methods. The code is released at https://github.com/isyangshu/Surgformer.
Abstract:The right to be forgotten, as stated in most data regulations, poses an underexplored challenge in federated learning (FL), leading to the development of federated unlearning (FU). However, current FU approaches often face trade-offs between efficiency, model performance, forgetting efficacy, and privacy preservation. In this paper, we delve into the paradigm of Federated Client Unlearning (FCU) to guarantee a client the right to erase the contribution or the influence, introducing the first FU framework in medical imaging. In the unlearning process of a client, the proposed model-contrastive unlearning marks a pioneering step towards feature-level unlearning, and frequency-guided memory preservation ensures smooth forgetting of local knowledge while maintaining the generalizability of the trained global model, thus avoiding performance compromises and guaranteeing rapid post-training. We evaluated our FCU framework on two public medical image datasets, including Intracranial hemorrhage diagnosis and skin lesion diagnosis, demonstrating that our framework outperformed other state-of-the-art FU frameworks, with an expected speed-up of 10-15 times compared with retraining from scratch. The code and the organized datasets can be found at: https://github.com/dzp2095/FCU.
Abstract:The essence of precision oncology lies in its commitment to tailor targeted treatments and care measures to each patient based on the individual characteristics of the tumor. The inherent heterogeneity of tumors necessitates gathering information from diverse data sources to provide valuable insights from various perspectives, fostering a holistic comprehension of the tumor. Over the past decade, multimodal data integration technology for precision oncology has made significant strides, showcasing remarkable progress in understanding the intricate details within heterogeneous data modalities. These strides have exhibited tremendous potential for improving clinical decision-making and model interpretation, contributing to the advancement of cancer care and treatment. Given the rapid progress that has been achieved, we provide a comprehensive overview of about 300 papers detailing cutting-edge multimodal data integration techniques in precision oncology. In addition, we conclude the primary clinical applications that have reaped significant benefits, including early assessment, diagnosis, prognosis, and biomarker discovery. Finally, derived from the findings of this survey, we present an in-depth analysis that explores the pivotal challenges and reveals essential pathways for future research in the field of multimodal data integration for precision oncology.
Abstract:Medical report generation has achieved remarkable advancements yet has still been faced with several challenges. First, the inherent imbalance in the distribution of normal and abnormal cases may lead models to exhibit a biased focus on normal samples, resulting in unreliable diagnoses. Second, the frequent occurrence of common template sentences in the reports may overwhelm the critical abnormal information. Moreover, existing works focus on 2D chest X-rays, leaving CT report generation underexplored due to the high-dimensional nature of CT images and the limited availability of CT-report pairs. Recently, LLM has shown a great ability to generate reliable answers with appropriate prompts, which shed light on addressing the aforementioned challenges. In this paper, we propose Dia-LLaMA, a framework to adapt the LLaMA2-7B for CT report generation by incorporating diagnostic information as guidance prompts. Considering the high dimension of CT, we leverage a pre-trained ViT3D with perceiver to extract the visual information. To tailor the LLM for report generation and emphasize abnormality, we extract additional diagnostic information by referring to a disease prototype memory bank, which is updated during training to capture common disease representations. Furthermore, we introduce disease-aware attention to enable the model to adjust attention for different diseases. Experiments on the chest CT dataset demonstrated that our proposed method outperformed previous methods and achieved state-of-the-art on both clinical efficacy performance and natural language generation metrics. The code will be made publically available.
Abstract:Utilizing potent representations of the large vision-language models (VLMs) to accomplish various downstream tasks has attracted increasing attention. Within this research field, soft prompt learning has become a representative approach for efficiently adapting VLMs such as CLIP, to tasks like image classification. However, most existing prompt learning methods learn text tokens that are unexplainable, which cannot satisfy the stringent interpretability requirements of Explainable Artificial Intelligence (XAI) in high-stakes scenarios like healthcare. To address this issue, we propose a novel explainable prompt learning framework that leverages medical knowledge by aligning the semantics of images, learnable prompts, and clinical concept-driven prompts at multiple granularities. Moreover, our framework addresses the lack of valuable concept annotations by eliciting knowledge from large language models and offers both visual and textual explanations for the prompts. Extensive experiments and explainability analyses conducted on various datasets, with and without concept labels, demonstrate that our method simultaneously achieves superior diagnostic performance, flexibility, and interpretability, shedding light on the effectiveness of foundation models in facilitating XAI. The code will be made publically available.
Abstract:Deep learning could be prone to learning shortcuts raised by dataset bias and result in inaccurate, unreliable, and unfair models, which impedes its adoption in real-world clinical applications. Despite its significance, there is a dearth of research in the medical image classification domain to address dataset bias. Furthermore, the bias labels are often agnostic, as identifying biases can be laborious and depend on post-hoc interpretation. This paper proposes learning Adaptive Agreement from a Biased Council (Ada-ABC), a debiasing framework that does not rely on explicit bias labels to tackle dataset bias in medical images. Ada-ABC develops a biased council consisting of multiple classifiers optimized with generalized cross entropy loss to learn the dataset bias. A debiasing model is then simultaneously trained under the guidance of the biased council. Specifically, the debiasing model is required to learn adaptive agreement with the biased council by agreeing on the correctly predicted samples and disagreeing on the wrongly predicted samples by the biased council. In this way, the debiasing model could learn the target attribute on the samples without spurious correlations while also avoiding ignoring the rich information in samples with spurious correlations. We theoretically demonstrated that the debiasing model could learn the target features when the biased model successfully captures dataset bias. Moreover, to our best knowledge, we constructed the first medical debiasing benchmark from four datasets containing seven different bias scenarios. Our extensive experiments practically showed that our proposed Ada-ABC outperformed competitive approaches, verifying its effectiveness in mitigating dataset bias for medical image classification. The codes and organized benchmark datasets will be made publicly available.