Harvard University
Abstract:Generating accurate radiology reports from medical images is a clinically important but challenging task. While current Vision Language Models (VLMs) show promise, they are prone to generating hallucinations, potentially compromising patient care. We introduce RadFlag, a black-box method to enhance the accuracy of radiology report generation. Our method uses a sampling-based flagging technique to find hallucinatory generations that should be removed. We first sample multiple reports at varying temperatures and then use a Large Language Model (LLM) to identify claims that are not consistently supported across samples, indicating that the model has low confidence in those claims. Using a calibrated threshold, we flag a fraction of these claims as likely hallucinations, which should undergo extra review or be automatically rejected. Our method achieves high precision when identifying both individual hallucinatory sentences and reports that contain hallucinations. As an easy-to-use, black-box system that only requires access to a model's temperature parameter, RadFlag is compatible with a wide range of radiology report generation models and has the potential to broadly improve the quality of automated radiology reporting.
Abstract:The integration of Large Language Models (LLMs) into medical applications has sparked widespread interest across the healthcare industry, from drug discovery and development to clinical decision support, assisting telemedicine, medical devices, and healthcare insurance applications. This perspective paper aims to discuss the inner workings of building LLM-powered medical AI applications and introduces a comprehensive framework for their development. We review existing literature and outline the unique challenges of applying LLMs in specialized medical contexts. Additionally, we introduce a three-step framework to organize medical LLM research activities: 1) Modeling: breaking down complex medical workflows into manageable steps for developing medical-specific models; 2) Optimization: optimizing the model performance with crafted prompts and integrating external knowledge and tools, and 3) System engineering: decomposing complex tasks into subtasks and leveraging human expertise for building medical AI applications. Furthermore, we offer a detailed use case playbook that describes various LLM-powered medical AI applications, such as optimizing clinical trial design, enhancing clinical decision support, and advancing medical imaging analysis. Finally, we discuss various challenges and considerations for building medical AI applications with LLMs, such as handling hallucination issues, data ownership and compliance, privacy, intellectual property considerations, compute cost, sustainability issues, and responsible AI requirements.
Abstract:Radiology reports often remain incomprehensible to patients, undermining patient-centered care. We present ReXplain (Radiology eXplanation), an innovative AI-driven system that generates patient-friendly video reports for radiology findings. ReXplain uniquely integrates a large language model for text simplification, an image segmentation model for anatomical region identification, and an avatar generation tool, producing comprehensive explanations with plain language, highlighted imagery, and 3D organ renderings. Our proof-of-concept study with five board-certified radiologists indicates that ReXplain could accurately deliver radiological information and effectively simulate one-on-one consultations. This work demonstrates a new paradigm in AI-assisted medical communication, potentially improving patient engagement and satisfaction in radiology care, and opens new avenues for research in multimodal medical communication.
Abstract:Accurately interpreting medical images and writing radiology reports is a critical but challenging task in healthcare. Both human-written and AI-generated reports can contain errors, ranging from clinical inaccuracies to linguistic mistakes. To address this, we introduce ReXErr, a methodology that leverages Large Language Models to generate representative errors within chest X-ray reports. Working with board-certified radiologists, we developed error categories that capture common mistakes in both human and AI-generated reports. Our approach uses a novel sampling scheme to inject diverse errors while maintaining clinical plausibility. ReXErr demonstrates consistency across error categories and produces errors that closely mimic those found in real-world scenarios. This method has the potential to aid in the development and evaluation of report correction algorithms, potentially enhancing the quality and reliability of radiology reporting.
Abstract:Given the rapidly expanding capabilities of generative AI models for radiology, there is a need for robust metrics that can accurately measure the quality of AI-generated radiology reports across diverse hospitals. We develop ReXamine-Global, a LLM-powered, multi-site framework that tests metrics across different writing styles and patient populations, exposing gaps in their generalization. First, our method tests whether a metric is undesirably sensitive to reporting style, providing different scores depending on whether AI-generated reports are stylistically similar to ground-truth reports or not. Second, our method measures whether a metric reliably agrees with experts, or whether metric and expert scores of AI-generated report quality diverge for some sites. Using 240 reports from 6 hospitals around the world, we apply ReXamine-Global to 7 established report evaluation metrics and uncover serious gaps in their generalizability. Developers can apply ReXamine-Global when designing new report evaluation metrics, ensuring their robustness across sites. Additionally, our analysis of existing metrics can guide users of those metrics towards evaluation procedures that work reliably at their sites of interest.
Abstract:Recent advancements in artificial intelligence have significantly improved the automatic generation of radiology reports. However, existing evaluation methods fail to reveal the models' understanding of radiological images and their capacity to achieve human-level granularity in descriptions. To bridge this gap, we introduce a system, named ReXKG, which extracts structured information from processed reports to construct a comprehensive radiology knowledge graph. We then propose three metrics to evaluate the similarity of nodes (ReXKG-NSC), distribution of edges (ReXKG-AMS), and coverage of subgraphs (ReXKG-SCS) across various knowledge graphs. We conduct an in-depth comparative analysis of AI-generated and human-written radiology reports, assessing the performance of both specialist and generalist models. Our study provides a deeper understanding of the capabilities and limitations of current AI models in radiology report generation, offering valuable insights for improving model performance and clinical applicability.
Abstract:Recent advances in generative vision-language models (VLMs) have exciting potential implications for AI in radiology, yet VLMs are also known to produce hallucinations, nonsensical text, and other unwanted behaviors that can waste clinicians' time and cause patient harm. Drawing on recent work on direct preference optimization (DPO), we propose a simple method for modifying the behavior of pretrained VLMs performing radiology report generation by suppressing unwanted types of generations. We apply our method to the prevention of hallucinations of prior exams, addressing a long-established problem behavior in models performing chest X-ray report generation. Across our experiments, we find that DPO fine-tuning achieves a 3.2-4.8x reduction in lines hallucinating prior exams while maintaining model performance on clinical accuracy metrics. Our work is, to the best of our knowledge, the first work to apply DPO to medical VLMs, providing a data- and compute- efficient way to suppress problem behaviors while maintaining overall clinical accuracy.
Abstract:The current gold standard for evaluating generated chest x-ray (CXR) reports is through radiologist annotations. However, this process can be extremely time-consuming and costly, especially when evaluating large numbers of reports. In this work, we present FineRadScore, a Large Language Model (LLM)-based automated evaluation metric for generated CXR reports. Given a candidate report and a ground-truth report, FineRadScore gives the minimum number of line-by-line corrections required to go from the candidate to the ground-truth report. Additionally, FineRadScore provides an error severity rating with each correction and generates comments explaining why the correction was needed. We demonstrate that FineRadScore's corrections and error severity scores align with radiologist opinions. We also show that, when used to judge the quality of the report as a whole, FineRadScore aligns with radiologists as well as current state-of-the-art automated CXR evaluation metrics. Finally, we analyze FineRadScore's shortcomings to provide suggestions for future improvements.
Abstract:Medical image interpretation using deep learning has shown promise but often requires extensive expert-annotated datasets. To reduce this annotation burden, we develop an Image-Graph Contrastive Learning framework that pairs chest X-rays with structured report knowledge graphs automatically extracted from radiology notes. Our approach uniquely encodes the disconnected graph components via a relational graph convolution network and transformer attention. In experiments on the CheXpert dataset, this novel graph encoding strategy enabled the framework to outperform existing methods that use image-text contrastive learning in 1% linear evaluation and few-shot settings, while achieving comparable performance to radiologists. By exploiting unlabeled paired images and text, our framework demonstrates the potential of structured clinical insights to enhance contrastive learning for medical images. This work points toward reducing demands on medical experts for annotations, improving diagnostic precision, and advancing patient care through robust medical image understanding.
Abstract:Current medical artificial intelligence systems are often limited to narrow applications, hindering their widespread adoption in clinical practice. To address this limitation, we propose MedVersa, a generalist learner that enables flexible learning and tasking for medical image interpretation. By leveraging a large language model as a learnable orchestrator, MedVersa can learn from both visual and linguistic supervision, support multimodal inputs, and perform real-time task specification. This versatility allows MedVersa to adapt to various clinical scenarios and perform multifaceted medical image analysis. We introduce MedInterp, the largest multimodal dataset to date for medical image interpretation, consisting of over 13 million annotated instances spanning 11 tasks across 3 modalities, to support the development of MedVersa. Our experiments demonstrate that MedVersa achieves state-of-the-art performance in 9 tasks, sometimes outperforming specialist counterparts by over 10%. MedVersa is the first to showcase the viability of multimodal generative medical AI in implementing multimodal outputs, inputs, and dynamic task specification, highlighting its potential as a multifunctional system for comprehensive medical image analysis. This generalist approach to medical image interpretation paves the way for more adaptable and efficient AI-assisted clinical decision-making.