Abstract:We present a comprehensive evaluation of a2z-1, an artificial intelligence (AI) model designed to analyze abdomen-pelvis CT scans for 21 time-sensitive and actionable findings. Our study focuses on rigorous assessment of the model's performance and generalizability. Large-scale retrospective analysis demonstrates an average AUC of 0.931 across 21 conditions. External validation across two distinct health systems confirms consistent performance (AUC 0.923), establishing generalizability to different evaluation scenarios, with notable performance in critical findings such as small bowel obstruction (AUC 0.958) and acute pancreatitis (AUC 0.961). Subgroup analysis shows consistent accuracy across patient sex, age groups, and varied imaging protocols, including different slice thicknesses and contrast administration types. Comparison of high-confidence model outputs to radiologist reports reveals instances where a2z-1 identified overlooked findings, suggesting potential for quality assurance applications.
Abstract:Accurately interpreting medical images and writing radiology reports is a critical but challenging task in healthcare. Both human-written and AI-generated reports can contain errors, ranging from clinical inaccuracies to linguistic mistakes. To address this, we introduce ReXErr, a methodology that leverages Large Language Models to generate representative errors within chest X-ray reports. Working with board-certified radiologists, we developed error categories that capture common mistakes in both human and AI-generated reports. Our approach uses a novel sampling scheme to inject diverse errors while maintaining clinical plausibility. ReXErr demonstrates consistency across error categories and produces errors that closely mimic those found in real-world scenarios. This method has the potential to aid in the development and evaluation of report correction algorithms, potentially enhancing the quality and reliability of radiology reporting.