Abstract:We propose the Multimodal Clinical Benchmark for Emergency Care (MC-BEC), a comprehensive benchmark for evaluating foundation models in Emergency Medicine using a dataset of 100K+ continuously monitored Emergency Department visits from 2020-2022. MC-BEC focuses on clinically relevant prediction tasks at timescales from minutes to days, including predicting patient decompensation, disposition, and emergency department (ED) revisit, and includes a standardized evaluation framework with train-test splits and evaluation metrics. The multimodal dataset includes a wide range of detailed clinical data, including triage information, prior diagnoses and medications, continuously measured vital signs, electrocardiogram and photoplethysmograph waveforms, orders placed and medications administered throughout the visit, free-text reports of imaging studies, and information on ED diagnosis, disposition, and subsequent revisits. We provide performance baselines for each prediction task to enable the evaluation of multimodal, multitask models. We believe that MC-BEC will encourage researchers to develop more effective, generalizable, and accessible foundation models for multimodal clinical data.
Abstract:Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications. Current instantiations of embedded machine learning (ML) suffer from complex integration, lack of modularity, and privacy and security concerns from data movement. This article proposes a more data-centric paradigm for embedding sensor intelligence on edge devices to combat these challenges. Our vision for "sensor 2.0" entails segregating sensor input data and ML processing from the wider system at the hardware level and providing a thin interface that mimics traditional sensors in functionality. This separation leads to a modular and easy-to-use ML sensor device. We discuss challenges presented by the standard approach of building ML processing into the software stack of the controlling microprocessor on an embedded system and how the modularity of ML sensors alleviates these problems. ML sensors increase privacy and accuracy while making it easier for system builders to integrate ML into their products as a simple component. We provide examples of prospective ML sensors and an illustrative datasheet as a demonstration and hope that this will build a dialogue to progress us towards sensor 2.0.
Abstract:A major obstacle to the integration of deep learning models for chest x-ray interpretation into clinical settings is the lack of understanding of their failure modes. In this work, we first investigate whether there are patient subgroups that chest x-ray models are likely to misclassify. We find that patient age and the radiographic finding of lung lesion, pneumothorax or support devices are statistically relevant features for predicting misclassification for some chest x-ray models. Second, we develop misclassification predictors on chest x-ray models using their outputs and clinical features. We find that our best performing misclassification identifier achieves an AUROC close to 0.9 for most diseases. Third, employing our misclassification identifiers, we develop a corrective algorithm to selectively flip model predictions that have high likelihood of misclassification at inference time. We observe F1 improvement on the prediction of Consolidation (0.008 [95\% CI 0.005, 0.010]) and Edema (0.003, [95\% CI 0.001, 0.006]). By carrying out our investigation on ten distinct and high-performing chest x-ray models, we are able to derive insights across model architectures and offer a generalizable framework applicable to other medical imaging tasks.