Abstract:Large language models have drawn significant attention to the challenge of safe alignment, especially regarding jailbreak attacks that circumvent security measures to produce harmful content. To address the limitations of existing methods like GCG, which perform well in single-model attacks but lack transferability, we propose several enhancements, including a scenario induction template, optimized suffix selection, and the integration of re-suffix attack mechanism to reduce inconsistent outputs. Our approach has shown superior performance in extensive experiments across various benchmarks, achieving nearly 100% success rates in both attack execution and transferability. Notably, our method has won the online first place in the AISG-hosted Global Challenge for Safe and Secure LLMs.
Abstract:Vision-Language Pre-training (VLP) models like CLIP have achieved remarkable success in computer vision and particularly demonstrated superior robustness to distribution shifts of 2D images. However, their robustness under 3D viewpoint variations is still limited, which can hinder the development for real-world applications. This paper successfully addresses this concern while keeping VLPs' original performance by breaking through two primary obstacles: 1) the scarcity of training data and 2) the suboptimal fine-tuning paradigms. To combat data scarcity, we build the Multi-View Caption (MVCap) dataset -- a comprehensive collection of over four million multi-view image-text pairs across more than 100K objects, providing more potential for VLP models to develop generalizable viewpoint-invariant representations. To address the limitations of existing paradigms in performance trade-offs and training efficiency, we design a novel fine-tuning framework named Omniview-Tuning (OVT). Specifically, OVT introduces a Cross-Viewpoint Alignment objective through a minimax-like optimization strategy, which effectively aligns representations of identical objects from diverse viewpoints without causing overfitting. Additionally, OVT fine-tunes VLP models in a parameter-efficient manner, leading to minimal computational cost. Extensive experiments on various VLP models with different architectures validate that OVT significantly improves the models' resilience to viewpoint shifts and keeps the original performance, establishing a pioneering standard for boosting the viewpoint invariance of VLP models.
Abstract:This paper proposes a meshless deep learning algorithm, enriched physics-informed neural networks (EPINNs), to solve dynamic Poisson-Nernst-Planck (PNP) equations with strong coupling and nonlinear characteristics. The EPINNs takes the traditional physics-informed neural networks as the foundation framework, and adds the adaptive loss weight to balance the loss functions, which automatically assigns the weights of losses by updating the parameters in each iteration based on the maximum likelihood estimate. The resampling strategy is employed in the EPINNs to accelerate the convergence of loss function. Meanwhile, the GPU parallel computing technique is adopted to accelerate the solving process. Four examples are provided to demonstrate the validity and effectiveness of the proposed method. Numerical results indicate that the new method has better applicability than traditional numerical methods in solving such coupled nonlinear systems. More importantly, the EPINNs is more accurate, stable, and fast than the traditional physics-informed neural networks. This work provides a simple and high-performance numerical tool for addressing PNPs with arbitrary boundary shapes and boundary conditions.
Abstract:The emergence of artificial intelligence-generated content (AIGC) has raised concerns about the authenticity of multimedia content in various fields. However, existing research for forgery content detection has focused mainly on binary classification tasks of complete videos, which has limited applicability in industrial settings. To address this gap, we propose UMMAFormer, a novel universal transformer framework for temporal forgery localization (TFL) that predicts forgery segments with multimodal adaptation. Our approach introduces a Temporal Feature Abnormal Attention (TFAA) module based on temporal feature reconstruction to enhance the detection of temporal differences. We also design a Parallel Cross-Attention Feature Pyramid Network (PCA-FPN) to optimize the Feature Pyramid Network (FPN) for subtle feature enhancement. To evaluate the proposed method, we contribute a novel Temporal Video Inpainting Localization (TVIL) dataset specifically tailored for video inpainting scenes. Our experiments show that our approach achieves state-of-the-art performance on benchmark datasets, including Lav-DF, TVIL, and Psynd, significantly outperforming previous methods. The code and data are available at https://github.com/ymhzyj/UMMAFormer/.
Abstract:Reasonable setting of traffic signals can be very helpful in alleviating congestion in urban traffic networks. Meta-heuristic optimization algorithms have proved themselves to be able to find high-quality signal timing plans. However, they generally suffer from performance deterioration when solving large-scale traffic signal optimization problems due to the huge search space and limited computational budget. Directing against this issue, this study proposes a surrogate-assisted cooperative signal optimization (SCSO) method. Different from existing methods that directly deal with the entire traffic network, SCSO first decomposes it into a set of tractable sub-networks, and then achieves signal setting by cooperatively optimizing these sub-networks with a surrogate-assisted optimizer. The decomposition operation significantly narrows the search space of the whole traffic network, and the surrogate-assisted optimizer greatly lowers the computational burden by reducing the number of expensive traffic simulations. By taking Newman fast algorithm, radial basis function and a modified estimation of distribution algorithm as decomposer, surrogate model and optimizer, respectively, this study develops a concrete SCSO algorithm. To evaluate its effectiveness and efficiency, a large-scale traffic network involving crossroads and T-junctions is generated based on a real traffic network. Comparison with several existing meta-heuristic algorithms specially designed for traffic signal optimization demonstrates the superiority of SCSO in reducing the average delay time of vehicles.
Abstract:Problem decomposition plays a vital role when applying cooperative coevolution (CC) to large scale global optimization problems. However, most learning-based decomposition algorithms either only apply to additively separable problems or face the issue of false separability detections. Directing against these limitations, this study proposes a novel decomposition algorithm called surrogate-assisted variable grouping (SVG). SVG first designs a general-separability-oriented detection criterion according to whether the optimum of a variable changes with other variables. This criterion is consistent with the separability definition and thus endows SVG with broad applicability and high accuracy. To reduce the fitness evaluation requirement, SVG seeks the optimum of a variable with the help of a surrogate model rather than the original expensive high-dimensional model. Moreover, it converts the variable grouping process into a dynamic-binary-tree search one, which facilitates reutilizing historical separability detection information and thus reducing detection times. To evaluate the performance of SVG, a suite of benchmark functions with up to 2000 dimensions, including additively and non-additively separable ones, were designed. Experimental results on these functions indicate that, compared with six state-of-the-art decomposition algorithms, SVG possesses broader applicability and competitive efficiency. Furthermore, it can significantly enhance the optimization performance of CC.