Abstract:Highly realistic AI generated face forgeries known as deepfakes have raised serious social concerns. Although DNN-based face forgery detection models have achieved good performance, they are vulnerable to latest generative methods that have less forgery traces and adversarial attacks. This limitation of generalization and robustness hinders the credibility of detection results and requires more explanations. In this work, we provide counterfactual explanations for face forgery detection from an artifact removal perspective. Specifically, we first invert the forgery images into the StyleGAN latent space, and then adversarially optimize their latent representations with the discrimination supervision from the target detection model. We verify the effectiveness of the proposed explanations from two aspects: (1) Counterfactual Trace Visualization: the enhanced forgery images are useful to reveal artifacts by visually contrasting the original images and two different visualization methods; (2) Transferable Adversarial Attacks: the adversarial forgery images generated by attacking the detection model are able to mislead other detection models, implying the removed artifacts are general. Extensive experiments demonstrate that our method achieves over 90% attack success rate and superior attack transferability. Compared with naive adversarial noise methods, our method adopts both generative and discriminative model priors, and optimize the latent representations in a synthesis-by-analysis way, which forces the search of counterfactual explanations on the natural face manifold. Thus, more general counterfactual traces can be found and better adversarial attack transferability can be achieved.
Abstract:Deep neural networks have significantly improved the performance of face forgery detection models in discriminating Artificial Intelligent Generated Content (AIGC). However, their security is significantly threatened by the injection of triggers during model training (i.e., backdoor attacks). Although existing backdoor defenses and manual data selection can mitigate those using human-eye-sensitive triggers, such as patches or adversarial noises, the more challenging natural backdoor triggers remain insufficiently researched. To further investigate natural triggers, we propose a novel analysis-by-synthesis backdoor attack against face forgery detection models, which embeds natural triggers in the latent space. We thoroughly study such backdoor vulnerability from two perspectives: (1) Model Discrimination (Optimization-Based Trigger): we adopt a substitute detection model and find the trigger by minimizing the cross-entropy loss; (2) Data Distribution (Custom Trigger): we manipulate the uncommon facial attributes in the long-tailed distribution to generate poisoned samples without the supervision from detection models. Furthermore, to completely evaluate the detection models towards the latest AIGC, we utilize both state-of-the-art StyleGAN and Stable Diffusion for trigger generation. Finally, these backdoor triggers introduce specific semantic features to the generated poisoned samples (e.g., skin textures and smile), which are more natural and robust. Extensive experiments show that our method is superior from three levels: (1) Attack Success Rate: ours achieves a high attack success rate (over 99%) and incurs a small model accuracy drop (below 0.2%) with a low poisoning rate (less than 3%); (2) Backdoor Defense: ours shows better robust performance when faced with existing backdoor defense methods; (3) Human Inspection: ours is less human-eye-sensitive from a comprehensive user study.
Abstract:The privacy and security of face data on social media are facing unprecedented challenges as it is vulnerable to unauthorized access and identification. A common practice for solving this problem is to modify the original data so that it could be protected from being recognized by malicious face recognition (FR) systems. However, such ``adversarial examples'' obtained by existing methods usually suffer from low transferability and poor image quality, which severely limits the application of these methods in real-world scenarios. In this paper, we propose a 3D-Aware Adversarial Makeup Generation GAN (3DAM-GAN). which aims to improve the quality and transferability of synthetic makeup for identity information concealing. Specifically, a UV-based generator consisting of a novel Makeup Adjustment Module (MAM) and Makeup Transfer Module (MTM) is designed to render realistic and robust makeup with the aid of symmetric characteristics of human faces. Moreover, a makeup attack mechanism with an ensemble training strategy is proposed to boost the transferability of black-box models. Extensive experiment results on several benchmark datasets demonstrate that 3DAM-GAN could effectively protect faces against various FR models, including both publicly available state-of-the-art models and commercial face verification APIs, such as Face++, Baidu and Aliyun.
Abstract:Deep neural networks have shown their vulnerability to adversarial attacks. In this paper, we focus on sparse adversarial attack based on the $\ell_0$ norm constraint, which can succeed by only modifying a few pixels of an image. Despite a high attack success rate, prior sparse attack methods achieve a low transferability under the black-box protocol due to overfitting the target model. Therefore, we introduce a generator architecture to alleviate the overfitting issue and thus efficiently craft transferable sparse adversarial examples. Specifically, the generator decouples the sparse perturbation into amplitude and position components. We carefully design a random quantization operator to optimize these two components jointly in an end-to-end way. The experiment shows that our method has improved the transferability by a large margin under a similar sparsity setting compared with state-of-the-art methods. Moreover, our method achieves superior inference speed, 700$\times$ faster than other optimization-based methods. The code is available at https://github.com/shaguopohuaizhe/TSAA.
Abstract:Gait recognition has a broad application in social security due to its advantages in long-distance human identification. Despite the high accuracy of gait recognition systems, their adversarial robustness has not been explored. In this paper, we demonstrate that the state-of-the-art gait recognition model is vulnerable to adversarial attacks. A novel temporal sparse adversarial attack under a new defined distortion measurement is proposed. GAN-based architecture is employed to semantically generate adversarial high-quality gait silhouette. By sparsely substituting or inserting a few adversarial gait silhouettes, our proposed method can achieve a high attack success rate. The imperceptibility and the attacking success rate of the adversarial examples are well balanced. Experimental results show even only one-fortieth frames are attacked, the attack success rate still reaches 76.8%.
Abstract:It is well known that deep learning models are vulnerable to adversarial examples crafted by maliciously adding perturbations to original inputs. There are two types of attacks: targeted attack and non-targeted attack, and most researchers often pay more attention to the targeted adversarial examples. However, targeted attack has a low success rate, especially when aiming at a robust model or under a black-box attack protocol. In this case, non-targeted attack is the last chance to disable AI systems. Thus, in this paper, we propose a new attack mechanism which performs the non-targeted attack when the targeted attack fails. Besides, we aim to generate a single adversarial sample for different deployed models of the same task, e.g. image classification models. Hence, for this practical application, we focus on attacking ensemble models by dividing them into two groups: easy-to-attack and robust models. We alternately attack these two groups of models in the non-targeted or targeted manner. We name it a bagging and stacking ensemble (BAST) attack. The BAST attack can generate an adversarial sample that fails multiple models simultaneously. Some of the models classify the adversarial sample as a target label, and other models which are not attacked successfully may give wrong labels at least. The experimental results show that the proposed BAST attack outperforms the state-of-the-art attack methods on the new defined criterion that considers both targeted and non-targeted attack performance.