Abstract:The evolutionary paradigm has been successfully applied to neural network search(NAS) in recent years. Due to the vast search complexity of the global space, current research mainly seeks to repeatedly stack partial architectures to build the entire model or to seek the entire model based on manually designed benchmark modules. The above two methods are attempts to reduce the search difficulty by narrowing the search space. To efficiently search network architecture in the global space, this paper proposes another solution, namely a computationally efficient neural architecture evolutionary search framework based on network growth (G-EvoNAS). The complete network is obtained by gradually deepening different Blocks. The process begins from a shallow network, grows and evolves, and gradually deepens into a complete network, reducing the search complexity in the global space. Then, to improve the ranking accuracy of the network, we reduce the weight coupling of each network in the SuperNet by pruning the SuperNet according to elite groups at different growth stages. The G-EvoNAS is tested on three commonly used image classification datasets, CIFAR10, CIFAR100, and ImageNet, and compared with various state-of-the-art algorithms, including hand-designed networks and NAS networks. Experimental results demonstrate that G-EvoNAS can find a neural network architecture comparable to state-of-the-art designs in 0.2 GPU days.
Abstract:Neural network architecture search provides a solution to the automatic design of network structures. However, it is difficult to search the whole network architecture directly. Although using stacked cells to search neural network architectures is an effective way to reduce the complexity of searching, these methods do not able find the global optimal neural network structure since the number of layers, cells and connection methods is fixed. In this paper, we propose a Two-Stage Evolution for cell-based Network Architecture Search(TS-ENAS), including one-stage searching based on stacked cells and second-stage adjusting these cells. In our algorithm, a new cell-based search space and an effective two-stage encoding method are designed to represent cells and neural network structures. In addition, a cell-based weight inheritance strategy is designed to initialize the weight of the network, which significantly reduces the running time of the algorithm. The proposed methods are extensively tested and compared on four image classification dataset, Fashion-MNIST, CIFAR10, CIFAR100 and ImageNet and compared with 22 state-of-the-art algorithms including hand-designed networks and NAS networks. The experimental results show that TS-ENAS can more effectively find the neural network architecture with comparative performance.
Abstract:Background: Glioma is the most common brain malignant tumor, with a high morbidity rate and a mortality rate of more than three percent, which seriously endangers human health. The main method of acquiring brain tumors in the clinic is MRI. Segmentation of brain tumor regions from multi-modal MRI scan images is helpful for treatment inspection, post-diagnosis monitoring, and effect evaluation of patients. However, the common operation in clinical brain tumor segmentation is still manual segmentation, lead to its time-consuming and large performance difference between different operators, a consistent and accurate automatic segmentation method is urgently needed. Methods: To meet the above challenges, we propose an automatic brain tumor MRI data segmentation framework which is called AGSE-VNet. In our study, the Squeeze and Excite (SE) module is added to each encoder, the Attention Guide Filter (AG) module is added to each decoder, using the channel relationship to automatically enhance the useful information in the channel to suppress the useless information, and use the attention mechanism to guide the edge information and remove the influence of irrelevant information such as noise. Results: We used the BraTS2020 challenge online verification tool to evaluate our approach. The focus of verification is that the Dice scores of the whole tumor (WT), tumor core (TC) and enhanced tumor (ET) are 0.68, 0.85 and 0.70, respectively. Conclusion: Although MRI images have different intensities, AGSE-VNet is not affected by the size of the tumor, and can more accurately extract the features of the three regions, it has achieved impressive results and made outstanding contributions to the clinical diagnosis and treatment of brain tumor patients.
Abstract:Drought is a serious natural disaster that has a long duration and a wide range of influence. To decrease the drought-caused losses, drought prediction is the basis of making the corresponding drought prevention and disaster reduction measures. While this problem has been studied in the literature, it remains unknown whether drought can be precisely predicted or not with machine learning models using weather data. To answer this question, a real-world public dataset is leveraged in this study and different drought levels are predicted using the last 90 days of 18 meteorological indicators as the predictors. In a comprehensive approach, 16 machine learning models and 16 deep learning models are evaluated and compared. The results show no single model can achieve the best performance for all evaluation metrics simultaneously, which indicates the drought prediction problem is still challenging. As benchmarks for further studies, the code and results are publicly available in a Github repository.
Abstract:Communication networks are important infrastructures in contemporary society. There are still many challenges that are not fully solved and new solutions are proposed continuously in this active research area. In recent years, to model the network topology, graph-based deep learning has achieved state-of-the-art performance in a series of problems in communication networks. In this survey, we review the rapidly growing body of research using different graph-based deep learning models, e.g. graph convolutional and graph attention networks, in various problems from different communication networks, e.g. wireless networks, wired networks, and software-defined networks. We also present a well-organized list of the problem and solution for each study and identify future research directions. To the best of our knowledge, this paper is the first survey that focuses on the application of graph-based deep learning methods in communication networks. To track the follow-up research, a public GitHub repository is created, where the relevant papers will be updated continuously.
Abstract:Big data has been used widely in many areas including the transportation industry. Using various data sources, traffic states can be well estimated and further predicted for improving the overall operation efficiency. Combined with this trend, this study presents an up-to-date survey of open data and big data tools used for traffic estimation and prediction. Different data types are categorized and the off-the-shelf tools are introduced. To further promote the use of big data for traffic estimation and prediction tasks, challenges and future directions are given for future studies.
Abstract:Traffic forecasting is important for the success of intelligent transportation systems. Deep learning models, including convolution neural networks and recurrent neural networks, have been extensively applied in traffic forecasting problems to model spatial and temporal dependencies. In recent years, to model the graph structures in transportation systems as well as contextual information, graph neural networks have been introduced and have achieved state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of research using different graph neural networks, e.g. graph convolutional and graph attention networks, in various traffic forecasting problems, e.g. road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, and demand forecasting in ride-hailing platforms. We also present a comprehensive list of open data and source resources for each problem and identify future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public GitHub repository where the latest papers, open data, and source resources will be updated.
Abstract:In this letter, we contribute a multi-language handwritten digit recognition dataset named MNIST-MIX, which is the largest dataset of the same type in terms of both languages and data samples. With the same data format with MNIST, MNIST-MIX can be seamlessly applied in existing studies for handwritten digit recognition. By introducing digits from 10 different languages, MNIST-MIX becomes a more challenging dataset and its imbalanced classification requires a better design of models. We also present the results of applying a LeNet model which is pre-trained on MNIST as the baseline.
Abstract:Stock market prediction has been a classical yet challenging problem, with the attention from both economists and computer scientists. With the purpose of building an effective prediction model, both linear and machine learning tools have been explored for the past couple of decades. Lately, deep learning models have been introduced as new frontiers for this topic and the rapid development is too fast to catch up. Hence, our motivation for this survey is to give a latest review of recent works on deep learning models for stock market prediction. We not only category the different data sources, various neural network structures, and common used evaluation metrics, but also the implementation and reproducibility. Our goal is to help the interested researchers to synchronize with the latest progress and also help them to easily reproduce the previous studies as baselines. Base on the summary, we also highlight some future research directions in this topic.