Abstract:Mixture-of-Experts (MoE) has demonstrated strong performance in video understanding tasks, yet its adversarial robustness remains underexplored. Existing attack methods often treat MoE as a unified architecture, overlooking the independent and collaborative weaknesses of key components such as routers and expert modules. To fill this gap, we propose Temporal Lipschitz-Guided Attacks (TLGA) to thoroughly investigate component-level vulnerabilities in video MoE models. We first design attacks on the router, revealing its independent weaknesses. Building on this, we introduce Joint Temporal Lipschitz-Guided Attacks (J-TLGA), which collaboratively perturb both routers and experts. This joint attack significantly amplifies adversarial effects and exposes the Achilles' Heel (collaborative weaknesses) of the MoE architecture. Based on these insights, we further propose Joint Temporal Lipschitz Adversarial Training (J-TLAT). J-TLAT performs joint training to further defend against collaborative weaknesses, enhancing component-wise robustness. Our framework is plug-and-play and reduces inference cost by more than 60% compared with dense models. It consistently enhances adversarial robustness across diverse datasets and architectures, effectively mitigating both the independent and collaborative weaknesses of MoE.
Abstract:Large Reasoning Models (LRMs) improve answer quality through explicit chain-of-thought, yet this very capability introduces new safety risks: harmful content can be subtly injected, surface gradually, or be justified by misleading rationales within the reasoning trace. Existing safety evaluations, however, primarily focus on output-level judgments and rarely capture these dynamic risks along the reasoning process. In this paper, we present SafeRBench, the first benchmark that assesses LRM safety end-to-end -- from inputs and intermediate reasoning to final outputs. (1) Input Characterization: We pioneer the incorporation of risk categories and levels into input design, explicitly accounting for affected groups and severity, and thereby establish a balanced prompt suite reflecting diverse harm gradients. (2) Fine-Grained Output Analysis: We introduce a micro-thought chunking mechanism to segment long reasoning traces into semantically coherent units, enabling fine-grained evaluation across ten safety dimensions. (3) Human Safety Alignment: We validate LLM-based evaluations against human annotations specifically designed to capture safety judgments. Evaluations on 19 LRMs demonstrate that SafeRBench enables detailed, multidimensional safety assessment, offering insights into risks and protective mechanisms from multiple perspectives.
Abstract:Diffusion models have been successful in learning complex data distributions. This capability has driven their application to high-dimensional multi-objective black-box optimization problem. Existing approaches often employ an external optimization loop, such as an evolutionary algorithm, to the diffusion model. However, these approaches treat the diffusion model as a black-box refiner, which overlooks the internal distribution transition of the diffusion generation process, limiting their efficiency. To address these challenges, we propose the Inference-time Multi-target Generation (IMG) algorithm, which optimizes the diffusion process at inference-time to generate samples that simultaneously satisfy multiple objectives. Specifically, our IMG performs weighted resampling during the diffusion generation process according to the expected aggregated multi-objective values. This weighted resampling strategy ensures the diffusion-generated samples are distributed according to our desired multi-target Boltzmann distribution. We further derive that the multi-target Boltzmann distribution has an interesting log-likelihood interpretation, where it is the optimal solution to the distributional multi-objective optimization problem. We implemented IMG for a multi-objective molecule generation task. Experiments show that IMG, requiring only a single generation pass, achieves a significantly higher hypervolume than baseline optimization algorithms that often require hundreds of diffusion generations. Notably, our algorithm can be viewed as an optimized diffusion process and can be integrated into existing methods to further improve their performance.
Abstract:Text-to-image (T2I) generation has greatly enhanced creative expression, yet achieving preference-aligned generation in a real-time and training-free manner remains challenging. Previous methods often rely on static, pre-collected preferences or fine-tuning, limiting adaptability to evolving and nuanced user intents. In this paper, we highlight the need for instant preference-aligned T2I generation and propose a training-free framework grounded in multimodal large language model (MLLM) priors. Our framework decouples the task into two components: preference understanding and preference-guided generation. For preference understanding, we leverage MLLMs to automatically extract global preference signals from a reference image and enrich a given prompt using structured instruction design. Our approach supports broader and more fine-grained coverage of user preferences than existing methods. For preference-guided generation, we integrate global keyword-based control and local region-aware cross-attention modulation to steer the diffusion model without additional training, enabling precise alignment across both global attributes and local elements. The entire framework supports multi-round interactive refinement, facilitating real-time and context-aware image generation. Extensive experiments on the Viper dataset and our collected benchmark demonstrate that our method outperforms prior approaches in both quantitative metrics and human evaluations, and opens up new possibilities for dialog-based generation and MLLM-diffusion integration.
Abstract:Recently, multimodal tasks have strongly advanced the field of action recognition with their rich multimodal information. However, due to the scarcity of tri-modal data, research on tri-modal action recognition tasks faces many challenges. To this end, we have proposed a comprehensive multimodal action recognition solution that effectively utilizes multimodal information. First, the existing data are transformed and expanded by optimizing data enhancement techniques to enlarge the training scale. At the same time, more RGB datasets are used to pre-train the backbone network, which is better adapted to the new task by means of transfer learning. Secondly, multimodal spatial features are extracted with the help of 2D CNNs and combined with the Temporal Shift Module (TSM) to achieve multimodal spatial-temporal feature extraction comparable to 3D CNNs and improve the computational efficiency. In addition, common prediction enhancement methods, such as Stochastic Weight Averaging (SWA), Ensemble and Test-Time augmentation (TTA), are used to integrate the knowledge of models from different training periods of the same architecture and different architectures, so as to predict the actions from different perspectives and fully exploit the target information. Ultimately, we achieved the Top-1 accuracy of 99% and the Top-5 accuracy of 100% on the competition leaderboard, demonstrating the superiority of our solution.




Abstract:The emergence of generative artificial intelligence (GenAI) and large language models (LLMs) has revolutionized the landscape of digital content creation in different modalities. However, its potential use in Physical AI for engineering design, where the production of physically viable artifacts is paramount, remains vastly underexplored. The absence of physical knowledge in existing LLM-to-3D models often results in outputs detached from real-world physical constraints. To address this gap, we introduce LLM-to-Phy3D, a physically conform online 3D object generation that enables existing LLM-to-3D models to produce physically conforming 3D objects on the fly. LLM-to-Phy3D introduces a novel online black-box refinement loop that empowers large language models (LLMs) through synergistic visual and physics-based evaluations. By delivering directional feedback in an iterative refinement process, LLM-to-Phy3D actively drives the discovery of prompts that yield 3D artifacts with enhanced physical performance and greater geometric novelty relative to reference objects, marking a substantial contribution to AI-driven generative design. Systematic evaluations of LLM-to-Phy3D, supported by ablation studies in vehicle design optimization, reveal various LLM improvements gained by 4.5% to 106.7% in producing physically conform target domain 3D designs over conventional LLM-to-3D models. The encouraging results suggest the potential general use of LLM-to-Phy3D in Physical AI for scientific and engineering applications.
Abstract:Despite the promise of autonomous agentic reasoning, existing workflow generation methods frequently produce fragile, unexecutable plans due to unconstrained LLM-driven construction. We introduce MermaidFlow, a framework that redefines the agentic search space through safety-constrained graph evolution. At its core, MermaidFlow represent workflows as a verifiable intermediate representation using Mermaid, a structured and human-interpretable graph language. We formulate domain-aware evolutionary operators, i.e., crossover, mutation, insertion, and deletion, to preserve semantic correctness while promoting structural diversity, enabling efficient exploration of a high-quality, statically verifiable workflow space. Without modifying task settings or evaluation protocols, MermaidFlow achieves consistent improvements in success rates and faster convergence to executable plans on the agent reasoning benchmark. The experimental results demonstrate that safety-constrained graph evolution offers a scalable, modular foundation for robust and interpretable agentic reasoning systems.
Abstract:Adversarial Training (AT) has been shown to significantly enhance adversarial robustness via a min-max optimization approach. However, its effectiveness in video recognition tasks is hampered by two main challenges. First, fast adversarial training for video models remains largely unexplored, which severely impedes its practical applications. Specifically, most video adversarial training methods are computationally costly, with long training times and high expenses. Second, existing methods struggle with the trade-off between clean accuracy and adversarial robustness. To address these challenges, we introduce Video Fast Adversarial Training with Weak-to-Strong consistency (VFAT-WS), the first fast adversarial training method for video data. Specifically, VFAT-WS incorporates the following key designs: First, it integrates a straightforward yet effective temporal frequency augmentation (TF-AUG), and its spatial-temporal enhanced form STF-AUG, along with a single-step PGD attack to boost training efficiency and robustness. Second, it devises a weak-to-strong spatial-temporal consistency regularization, which seamlessly integrates the simpler TF-AUG and the more complex STF-AUG. Leveraging the consistency regularization, it steers the learning process from simple to complex augmentations. Both of them work together to achieve a better trade-off between clean accuracy and robustness. Extensive experiments on UCF-101 and HMDB-51 with both CNN and Transformer-based models demonstrate that VFAT-WS achieves great improvements in adversarial robustness and corruption robustness, while accelerating training by nearly 490%.
Abstract:The rise of customized diffusion models has spurred a boom in personalized visual content creation, but also poses risks of malicious misuse, severely threatening personal privacy and copyright protection. Some studies show that the aesthetic properties of images are highly positively correlated with human perception of image quality. Inspired by this, we approach the problem from a novel and intriguing aesthetic perspective to degrade the generation quality of maliciously customized models, thereby achieving better protection of facial identity. Specifically, we propose a Hierarchical Anti-Aesthetic (HAA) framework to fully explore aesthetic cues, which consists of two key branches: 1) Global Anti-Aesthetics: By establishing a global anti-aesthetic reward mechanism and a global anti-aesthetic loss, it can degrade the overall aesthetics of the generated content; 2) Local Anti-Aesthetics: A local anti-aesthetic reward mechanism and a local anti-aesthetic loss are designed to guide adversarial perturbations to disrupt local facial identity. By seamlessly integrating both branches, our HAA effectively achieves the goal of anti-aesthetics from a global to a local level during customized generation. Extensive experiments show that HAA outperforms existing SOTA methods largely in identity removal, providing a powerful tool for protecting facial privacy and copyright.
Abstract:Kolmogorov-Arnold Networks (KANs) have emerged as a transformative model paradigm, significantly impacting various fields. However, their adversarial robustness remains less underexplored, especially across different KAN architectures. To explore this critical safety issue, we conduct an analysis and find that due to overfitting to the specific basis functions of KANs, they possess poor adversarial transferability among different KANs. To tackle this challenge, we propose AdvKAN, the first transfer attack method for KANs. AdvKAN integrates two key components: 1) a Breakthrough-Defense Surrogate Model (BDSM), which employs a breakthrough-defense training strategy to mitigate overfitting to the specific structures of KANs. 2) a Global-Local Interaction (GLI) technique, which promotes sufficient interaction between adversarial gradients of hierarchical levels, further smoothing out loss surfaces of KANs. Both of them work together to enhance the strength of transfer attack among different KANs. Extensive experimental results on various KANs and datasets demonstrate the effectiveness of AdvKAN, which possesses notably superior attack capabilities and deeply reveals the vulnerabilities of KANs. Code will be released upon acceptance.