Abstract:Most research on abstractive summarization focuses on single-domain applications, often neglecting how domain shifts between documents affect performance and the generalization ability of summarization models. To address this issue, we introduce DomainSum, a hierarchical benchmark designed to capture fine-grained domain shifts in abstractive summarization. We categorize these shifts into three levels: genre, style, and topic, and demonstrate through comprehensive benchmark analysis that they follow a hierarchical structure. Furthermore, we evaluate the domain generalization capabilities of commonly used pre-trained language models (PLMs) and large language models (LLMs) in in-domain and cross-domain settings.
Abstract:Biomedical Event Extraction (BEE) is a challenging task that involves modeling complex relationships between fine-grained entities in biomedical text. BEE has traditionally been formulated as a classification problem. With the recent technological advancements in large language models (LLMs), generation-based models that cast event extraction as a sequence generation problem have attracted much attention from the NLP research communities. However, current generative models often overlook the importance of cross-instance information from complex event structures such as nested events and overlapping events, which contribute to over 20% of the events in the benchmark datasets. In this paper, we propose an event structure-aware generative model named GenBEE, which can capture complex event structures in biomedical text for biomedical event extraction. In particular, GenBEE constructs event prompts that distill knowledge from LLMs for incorporating both label semantics and argument dependency relationships into the proposed model. In addition, GenBEE also generates prefixes with event structural prompts to incorporate structural features for improving the model's overall performance. We have evaluated the proposed GenBEE model on three widely used biomedical event extraction benchmark datasets, namely MLEE, GE11, and PHEE. Experimental results show that GenBEE has achieved state-of-the-art performance on the MLEE and GE11 datasets, and achieved competitive results when compared to the state-of-the-art classification-based models on the PHEE dataset.
Abstract:Biomedical Event Extraction (BEE) is a challenging task that involves modeling complex relationships between fine-grained entities in biomedical text. BEE has traditionally been formulated as a classification problem. With the recent technological advancements in large language models (LLMs), generation-based models that cast event extraction as a sequence generation problem have attracted much attention from the NLP research communities. However, current generative models often overlook the importance of cross-instance information from complex event structures such as nested events and overlapping events, which contribute quite significantly in the benchmark datasets. In this paper, we propose an event structure-aware generative model called GenBEE, which can capture complex event structures in biomedical text for biomedical event extraction. In particular, GenBEE constructs event prompts that distill knowledge from LLMs for incorporating both label semantics and argument dependency relationships into the proposed model. In addition, GenBEE also generates prefixes with event structural prompts to incorporate structural features for improving the model's overall performance. We have evaluated the proposed GenBEE model on three widely used biomedical event extraction benchmark datasets, namely MLEE, GE11, and PHEE. Experimental results show that GenBEE has achieved state-of-the-art performance on the MLEE and GE11 datasets, and achieved competitive results when compared to the state-of-the-art classification-based models on the PHEE dataset.
Abstract:Recent research has explored distilling knowledge from large language models (LLMs) to optimize retriever models, especially within the retrieval-augmented generation (RAG) framework. However, most existing training methods rely on extracting supervision signals from LLMs' weights or their output probabilities, which is not only resource-intensive but also incompatible with black-box LLMs. In this paper, we introduce \textit{Intermediate Distillation}, a data-efficient knowledge distillation training scheme that treats LLMs as black boxes and distills their knowledge via an innovative LLM-ranker-retriever pipeline, solely using LLMs' ranking generation as the supervision signal. Extensive experiments demonstrate that our proposed method can significantly improve the performance of retriever models with only 1,000 training instances. Moreover, our distilled retriever model significantly boosts performance in question-answering tasks within the RAG framework, demonstrating the potential of LLMs to economically and effectively train smaller models.
Abstract:Text summarization research has undergone several significant transformations with the advent of deep neural networks, pre-trained language models (PLMs), and recent large language models (LLMs). This survey thus provides a comprehensive review of the research progress and evolution in text summarization through the lens of these paradigm shifts. It is organized into two main parts: (1) a detailed overview of datasets, evaluation metrics, and summarization methods before the LLM era, encompassing traditional statistical methods, deep learning approaches, and PLM fine-tuning techniques, and (2) the first detailed examination of recent advancements in benchmarking, modeling, and evaluating summarization in the LLM era. By synthesizing existing literature and presenting a cohesive overview, this survey also discusses research trends, open challenges, and proposes promising research directions in summarization, aiming to guide researchers through the evolving landscape of summarization research.
Abstract:The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Nighttime Flare Removal track on MIPI 2024. In total, 170 participants were successfully registered, and 14 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art performance on Nighttime Flare Removal. More details of this challenge and the link to the dataset can be found at https://mipi-challenge.org/MIPI2024/.
Abstract:Retrieval-augmented generation framework can address the limitations of large language models by enabling real-time knowledge updates for more accurate answers. An efficient way in the training phase of retrieval-augmented models is attention distillation, which uses attention scores as a supervision signal instead of manually annotated query-document pairs. Despite its growing popularity, the detailed mechanisms behind the success of attention distillation remain unexplored, particularly the specific patterns it leverages to benefit training. In this paper, we address this gap by conducting a comprehensive review of attention distillation workflow and identifying key factors influencing the learning quality of retrieval-augmented language models. We further propose indicators for optimizing models' training methods and avoiding ineffective training.
Abstract:The proliferation of fake news has emerged as a critical issue in recent years, requiring significant efforts to detect it. However, the existing fake news detection datasets are sourced from human journalists, which are likely to have inherent bias limitations due to the highly subjective nature of this task. In this paper, we revisit the existing fake news dataset verified by human journalists with augmented fact-checking by large language models (ChatGPT), and we name the augmented fake news dataset ChatGPT-FC. We quantitatively analyze the distinctions and resemblances between human journalists and LLM in assessing news subject credibility, news creator credibility, time-sensitive, and political framing. Our findings highlight LLM's potential to serve as a preliminary screening method, offering a promising avenue to mitigate the inherent biases of human journalists and enhance fake news detection.
Abstract:Synthetic aperture radar (SAR) image change detection is a critical task and has received increasing attentions in the remote sensing community. However, existing SAR change detection methods are mainly based on convolutional neural networks (CNNs), with limited consideration of global attention mechanism. In this letter, we explore Transformer-like architecture for SAR change detection to incorporate global attention. To this end, we propose a convolution and attention mixer (CAMixer). First, to compensate the inductive bias for Transformer, we combine self-attention with shift convolution in a parallel way. The parallel design effectively captures the global semantic information via the self-attention and performs local feature extraction through shift convolution simultaneously. Second, we adopt a gating mechanism in the feed-forward network to enhance the non-linear feature transformation. The gating mechanism is formulated as the element-wise multiplication of two parallel linear layers. Important features can be highlighted, leading to high-quality representations against speckle noise. Extensive experiments conducted on three SAR datasets verify the superior performance of the proposed CAMixer. The source codes will be publicly available at https://github.com/summitgao/CAMixer .
Abstract:Text editing is a crucial task that involves modifying text to better align with user intents. However, existing text editing benchmark datasets have limitations in providing only coarse-grained instructions. Consequently, although the edited output may seem reasonable, it often deviates from the intended changes outlined in the gold reference, resulting in low evaluation scores. To comprehensively investigate the text editing capabilities of large language models, this paper introduces XATU, the first benchmark specifically designed for fine-grained instruction-based explainable text editing. XATU covers a wide range of topics and text types, incorporating lexical, syntactic, semantic, and knowledge-intensive edits. To enhance interpretability, we leverage high-quality data sources and human annotation, resulting in a benchmark that includes fine-grained instructions and gold-standard edit explanations. By evaluating existing open and closed large language models against our benchmark, we demonstrate the effectiveness of instruction tuning and the impact of underlying architecture across various editing tasks. Furthermore, extensive experimentation reveals the significant role of explanations in fine-tuning language models for text editing tasks. The benchmark will be open-sourced to support reproduction and facilitate future research.