Abstract:Large Language Models (LLMs) have demonstrated impressive capabilities in various tasks, including instruction following, which is crucial for aligning model outputs with user expectations. However, evaluating LLMs' ability to follow instructions remains challenging due to the complexity and subjectivity of human language. Current benchmarks primarily focus on single-turn, monolingual instructions, which do not adequately reflect the complexities of real-world applications that require handling multi-turn and multilingual interactions. To address this gap, we introduce Multi-IF, a new benchmark designed to assess LLMs' proficiency in following multi-turn and multilingual instructions. Multi-IF, which utilizes a hybrid framework combining LLM and human annotators, expands upon the IFEval by incorporating multi-turn sequences and translating the English prompts into another 7 languages, resulting in a dataset of 4,501 multilingual conversations, where each has three turns. Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks. All the models tested showed a higher rate of failure in executing instructions correctly with each additional turn. For example, o1-preview drops from 0.877 at the first turn to 0.707 at the third turn in terms of average accuracy over all languages. Moreover, languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities. We release Multi-IF prompts and the evaluation code base to encourage further research in this critical area.
Abstract:Crafting effective features is a crucial yet labor-intensive and domain-specific task within machine learning pipelines. Fortunately, recent advancements in Large Language Models (LLMs) have shown promise in automating various data science tasks, including feature engineering. But despite this potential, evaluations thus far are primarily based on the end performance of a complete ML pipeline, providing limited insight into precisely how LLMs behave relative to human experts in feature engineering. To address this gap, we propose ELF-Gym, a framework for Evaluating LLM-generated Features. We curated a new dataset from historical Kaggle competitions, including 251 "golden" features used by top-performing teams. ELF-Gym then quantitatively evaluates LLM-generated features by measuring their impact on downstream model performance as well as their alignment with expert-crafted features through semantic and functional similarity assessments. This approach provides a more comprehensive evaluation of disparities between LLMs and human experts, while offering valuable insights into specific areas where LLMs may have room for improvement. For example, using ELF-Gym we empirically demonstrate that, in the best-case scenario, LLMs can semantically capture approximately 56% of the golden features, but at the more demanding implementation level this overlap drops to 13%. Moreover, in other cases LLMs may fail completely, particularly on datasets that require complex features, indicating broad potential pathways for improvement.
Abstract:What will information entry look like in the next generation of digital products? Since the 1970s, user access to relevant information has relied on domain-specific architectures of information retrieval (IR). Over the past two decades, the advent of modern IR systems, including web search engines and personalized recommender systems, has greatly improved the efficiency of retrieving relevant information from vast data corpora. However, the core paradigm of these IR systems remains largely unchanged, relying on filtering a predefined set of candidate items. Since 2022, breakthroughs in large language models (LLMs) have begun transforming how information is accessed, establishing a new technical paradigm. In this position paper, we introduce Agentic Information Retrieval (Agentic IR), a novel IR paradigm shaped by the capabilities of LLM agents. Agentic IR expands the scope of accessible tasks and leverages a suite of new techniques to redefine information retrieval. We discuss three types of cutting-edge applications of agentic IR and the challenges faced. We propose that agentic IR holds promise for generating innovative applications, potentially becoming a central information entry point in future digital ecosystems.
Abstract:Even the AI has been widely used and significantly changed our life, deploying the large AI models on resource limited edge devices directly is not appropriate. Thus, the model split inference is proposed to improve the performance of edge intelligence, in which the AI model is divided into different sub models and the resource-intensive sub model is offloaded to edge server wirelessly for reducing resource requirements and inference latency. However, the previous works mainly concentrate on improving and optimizing the system QoS, ignore the effect of QoE which is another critical item for the users except for QoS. Even the QoE has been widely learned in EC, considering the differences between task offloading in EC and split inference in EI, and the specific issues in QoE which are still not addressed in EC and EI, these algorithms cannot work effectively in edge split inference scenarios. Thus, an effective resource allocation algorithm is proposed in this paper, for accelerating split inference in EI and achieving the tradeoff between inference delay, QoE, and resource consumption, abbreviated as ERA. Specifically, the ERA takes the resource consumption, QoE, and inference latency into account to find the optimal model split strategy and resource allocation strategy. Since the minimum inference delay and resource consumption, and maximum QoE cannot be satisfied simultaneously, the gradient descent based algorithm is adopted to find the optimal tradeoff between them. Moreover, the loop iteration GD approach is developed to reduce the complexity of the GD algorithm caused by parameter discretization. Additionally, the properties of the proposed algorithms are investigated, including convergence, complexity, and approximation error. The experimental results demonstrate that the performance of ERA is much better than that of the previous studies.
Abstract:Artificial Intelligence (AI) is increasingly being integrated into scientific research, particularly in the social sciences, where understanding human behavior is critical. Large Language Models (LLMs) like GPT-4 have shown promise in replicating human-like responses in various psychological experiments. However, the extent to which LLMs can effectively replace human subjects across diverse experimental contexts remains unclear. Here, we conduct a large-scale study replicating 154 psychological experiments from top social science journals with 618 main effects and 138 interaction effects using GPT-4 as a simulated participant. We find that GPT-4 successfully replicates 76.0 percent of main effects and 47.0 percent of interaction effects observed in the original studies, closely mirroring human responses in both direction and significance. However, only 19.44 percent of GPT-4's replicated confidence intervals contain the original effect sizes, with the majority of replicated effect sizes exceeding the 95 percent confidence interval of the original studies. Additionally, there is a 71.6 percent rate of unexpected significant results where the original studies reported null findings, suggesting potential overestimation or false positives. Our results demonstrate the potential of LLMs as powerful tools in psychological research but also emphasize the need for caution in interpreting AI-driven findings. While LLMs can complement human studies, they cannot yet fully replace the nuanced insights provided by human subjects.
Abstract:GuessWhich is an engaging visual dialogue game that involves interaction between a Questioner Bot (QBot) and an Answer Bot (ABot) in the context of image-guessing. In this game, QBot's objective is to locate a concealed image solely through a series of visually related questions posed to ABot. However, effectively modeling visually related reasoning in QBot's decision-making process poses a significant challenge. Current approaches either lack visual information or rely on a single real image sampled at each round as decoding context, both of which are inadequate for visual reasoning. To address this limitation, we propose a novel approach that focuses on visually related reasoning through the use of a mental model of the undisclosed image. Within this framework, QBot learns to represent mental imagery, enabling robust visual reasoning by tracking the dialogue state. The dialogue state comprises a collection of representations of mental imagery, as well as representations of the entities involved in the conversation. At each round, QBot engages in visually related reasoning using the dialogue state to construct an internal representation, generate relevant questions, and update both the dialogue state and internal representation upon receiving an answer. Our experimental results on the VisDial datasets (v0.5, 0.9, and 1.0) demonstrate the effectiveness of our proposed model, as it achieves new state-of-the-art performance across all metrics and datasets, surpassing previous state-of-the-art models. Codes and datasets from our experiments are freely available at \href{https://github.com/xubuvd/GuessWhich}.
Abstract:Visual Dialog (VD) is a task where an agent answers a series of image-related questions based on a multi-round dialog history. However, previous VD methods often treat the entire dialog history as a simple text input, disregarding the inherent conversational information flows at the round level. In this paper, we introduce Multi-round Dialogue State Tracking model (MDST), a framework that addresses this limitation by leveraging the dialogue state learned from dialog history to answer questions. MDST captures each round of dialog history, constructing internal dialogue state representations defined as 2-tuples of vision-language representations. These representations effectively ground the current question, enabling the generation of accurate answers. Experimental results on the VisDial v1.0 dataset demonstrate that MDST achieves a new state-of-the-art performance in generative setting. Furthermore, through a series of human studies, we validate the effectiveness of MDST in generating long, consistent, and human-like answers while consistently answering a series of questions correctly.
Abstract:This study explores the potential of Large Language Models (LLMs), specifically GPT-4, to enhance objectivity in organizational task performance evaluations. Through comparative analyses across two studies, including various task performance outputs, we demonstrate that LLMs can serve as a reliable and even superior alternative to human raters in evaluating knowledge-based performance outputs, which are a key contribution of knowledge workers. Our results suggest that GPT ratings are comparable to human ratings but exhibit higher consistency and reliability. Additionally, combined multiple GPT ratings on the same performance output show strong correlations with aggregated human performance ratings, akin to the consensus principle observed in performance evaluation literature. However, we also find that LLMs are prone to contextual biases, such as the halo effect, mirroring human evaluative biases. Our research suggests that while LLMs are capable of extracting meaningful constructs from text-based data, their scope is currently limited to specific forms of performance evaluation. By highlighting both the potential and limitations of LLMs, our study contributes to the discourse on AI role in management studies and sets a foundation for future research to refine AI theoretical and practical applications in management.
Abstract:Recent advancements in generative artificial intelligence (AI) have transformed collaborative work processes, yet the impact on team performance remains underexplored. Here we examine the role of generative AI in enhancing or replacing traditional team dynamics using a randomized controlled experiment with 435 participants across 122 teams. We show that teams augmented with generative AI significantly outperformed those relying solely on human collaboration across various performance measures. Interestingly, teams with multiple AIs did not exhibit further gains, indicating diminishing returns with increased AI integration. Our analysis suggests that centralized AI usage by a few team members is more effective than distributed engagement. Additionally, individual-AI pairs matched the performance of conventional teams, suggesting a reduced need for traditional team structures in some contexts. However, despite this capability, individual-AI pairs still fell short of the performance levels achieved by AI-assisted teams. These findings underscore that while generative AI can replace some traditional team functions, more comprehensively integrating AI within team structures provides superior benefits, enhancing overall effectiveness beyond individual efforts.
Abstract:Sequential recommendation focuses on mining useful patterns from the user behavior history to better estimate his preference on the candidate items. Previous solutions adopt recurrent networks or retrieval methods to obtain the user's profile representation so as to perform the preference estimation. In this paper, we propose a novel framework of sequential recommendation called Look into the Future (LIFT), which builds and leverages the contexts of sequential recommendation. The context in LIFT refers to a user's current profile that can be represented based on both past and future behaviors. As such, the learned context will be more effective in predicting the user's behaviors in sequential recommendation. Apparently, it is impossible to use real future information to predict the current behavior, we thus propose a novel retrieval-based framework to use the most similar interaction's future information as the future context of the target interaction without data leakage. Furthermore, in order to exploit the intrinsic information embedded within the context itself, we introduce an innovative pretraining methodology incorporating behavior masking. This approach is designed to facilitate the efficient acquisition of context representations. We demonstrate that finding relevant contexts from the global user pool via retrieval methods will greatly improve preference estimation performance. In our extensive experiments over real-world datasets, LIFT demonstrates significant performance improvement on click-through rate prediction tasks in sequential recommendation over strong baselines.