Abstract:Recently, several studies have shown that utilizing contextual information to perceive target states is crucial for object tracking. They typically capture context by incorporating multiple video frames. However, these naive frame-context methods fail to consider the importance of each patch within a reference frame, making them susceptible to noise and redundant tokens, which deteriorates tracking performance. To address this challenge, we propose a new token context-aware tracking pipeline named LMTrack, designed to automatically learn high-quality reference tokens for efficient visual tracking. Embracing the principle of Less is More, the core idea of LMTrack is to analyze the importance distribution of all reference tokens, where important tokens are collected, continually attended to, and updated. Specifically, a novel Token Context Memory module is designed to dynamically collect high-quality spatio-temporal information of a target in an autoregressive manner, eliminating redundant background tokens from the reference frames. Furthermore, an effective Unidirectional Token Attention mechanism is designed to establish dependencies between reference tokens and search frame, enabling robust cross-frame association and target localization. Extensive experiments demonstrate the superiority of our tracker, achieving state-of-the-art results on tracking benchmarks such as GOT-10K, TrackingNet, and LaSOT.
Abstract:Online contextual reasoning and association across consecutive video frames are critical to perceive instances in visual tracking. However, most current top-performing trackers persistently lean on sparse temporal relationships between reference and search frames via an offline mode. Consequently, they can only interact independently within each image-pair and establish limited temporal correlations. To alleviate the above problem, we propose a simple, flexible and effective video-level tracking pipeline, named \textbf{ODTrack}, which densely associates the contextual relationships of video frames in an online token propagation manner. ODTrack receives video frames of arbitrary length to capture the spatio-temporal trajectory relationships of an instance, and compresses the discrimination features (localization information) of a target into a token sequence to achieve frame-to-frame association. This new solution brings the following benefits: 1) the purified token sequences can serve as prompts for the inference in the next video frame, whereby past information is leveraged to guide future inference; 2) the complex online update strategies are effectively avoided by the iterative propagation of token sequences, and thus we can achieve more efficient model representation and computation. ODTrack achieves a new \textit{SOTA} performance on seven benchmarks, while running at real-time speed. Code and models are available at \url{https://github.com/GXNU-ZhongLab/ODTrack}.
Abstract:In this paper, we present a simple, flexible and effective vision-language (VL) tracking pipeline, termed \textbf{MMTrack}, which casts VL tracking as a token generation task. Traditional paradigms address VL tracking task indirectly with sophisticated prior designs, making them over-specialize on the features of specific architectures or mechanisms. In contrast, our proposed framework serializes language description and bounding box into a sequence of discrete tokens. In this new design paradigm, all token queries are required to perceive the desired target and directly predict spatial coordinates of the target in an auto-regressive manner. The design without other prior modules avoids multiple sub-tasks learning and hand-designed loss functions, significantly reducing the complexity of VL tracking modeling and allowing our tracker to use a simple cross-entropy loss as unified optimization objective for VL tracking task. Extensive experiments on TNL2K, LaSOT, LaSOT$_{\rm{ext}}$ and OTB99-Lang benchmarks show that our approach achieves promising results, compared to other state-of-the-arts.