Abstract:How to effectively exploit spatio-temporal information is crucial to capture target appearance changes in visual tracking. However, most deep learning-based trackers mainly focus on designing a complicated appearance model or template updating strategy, while lacking the exploitation of context between consecutive frames and thus entailing the \textit{when-and-how-to-update} dilemma. To address these issues, we propose a novel explicit visual prompts framework for visual tracking, dubbed \textbf{EVPTrack}. Specifically, we utilize spatio-temporal tokens to propagate information between consecutive frames without focusing on updating templates. As a result, we cannot only alleviate the challenge of \textit{when-to-update}, but also avoid the hyper-parameters associated with updating strategies. Then, we utilize the spatio-temporal tokens to generate explicit visual prompts that facilitate inference in the current frame. The prompts are fed into a transformer encoder together with the image tokens without additional processing. Consequently, the efficiency of our model is improved by avoiding \textit{how-to-update}. In addition, we consider multi-scale information as explicit visual prompts, providing multiscale template features to enhance the EVPTrack's ability to handle target scale changes. Extensive experimental results on six benchmarks (i.e., LaSOT, LaSOT\rm $_{ext}$, GOT-10k, UAV123, TrackingNet, and TNL2K.) validate that our EVPTrack can achieve competitive performance at a real-time speed by effectively exploiting both spatio-temporal and multi-scale information. Code and models are available at https://github.com/GXNU-ZhongLab/EVPTrack.
Abstract:Online contextual reasoning and association across consecutive video frames are critical to perceive instances in visual tracking. However, most current top-performing trackers persistently lean on sparse temporal relationships between reference and search frames via an offline mode. Consequently, they can only interact independently within each image-pair and establish limited temporal correlations. To alleviate the above problem, we propose a simple, flexible and effective video-level tracking pipeline, named \textbf{ODTrack}, which densely associates the contextual relationships of video frames in an online token propagation manner. ODTrack receives video frames of arbitrary length to capture the spatio-temporal trajectory relationships of an instance, and compresses the discrimination features (localization information) of a target into a token sequence to achieve frame-to-frame association. This new solution brings the following benefits: 1) the purified token sequences can serve as prompts for the inference in the next video frame, whereby past information is leveraged to guide future inference; 2) the complex online update strategies are effectively avoided by the iterative propagation of token sequences, and thus we can achieve more efficient model representation and computation. ODTrack achieves a new \textit{SOTA} performance on seven benchmarks, while running at real-time speed. Code and models are available at \url{https://github.com/GXNU-ZhongLab/ODTrack}.
Abstract:In this paper, we present a simple, flexible and effective vision-language (VL) tracking pipeline, termed \textbf{MMTrack}, which casts VL tracking as a token generation task. Traditional paradigms address VL tracking task indirectly with sophisticated prior designs, making them over-specialize on the features of specific architectures or mechanisms. In contrast, our proposed framework serializes language description and bounding box into a sequence of discrete tokens. In this new design paradigm, all token queries are required to perceive the desired target and directly predict spatial coordinates of the target in an auto-regressive manner. The design without other prior modules avoids multiple sub-tasks learning and hand-designed loss functions, significantly reducing the complexity of VL tracking modeling and allowing our tracker to use a simple cross-entropy loss as unified optimization objective for VL tracking task. Extensive experiments on TNL2K, LaSOT, LaSOT$_{\rm{ext}}$ and OTB99-Lang benchmarks show that our approach achieves promising results, compared to other state-of-the-arts.