Abstract:Recently, the generation of dynamic 3D objects from a video has shown impressive results. Existing methods directly optimize Gaussians using whole information in frames. However, when dynamic regions are interwoven with static regions within frames, particularly if the static regions account for a large proportion, existing methods often overlook information in dynamic regions and are prone to overfitting on static regions. This leads to producing results with blurry textures. We consider that decoupling dynamic-static features to enhance dynamic representations can alleviate this issue. Thus, we propose a dynamic-static feature decoupling module (DSFD). Along temporal axes, it regards the portions of current frame features that possess significant differences relative to reference frame features as dynamic features. Conversely, the remaining parts are the static features. Then, we acquire decoupled features driven by dynamic features and current frame features. Moreover, to further enhance the dynamic representation of decoupled features from different viewpoints and ensure accurate motion prediction, we design a temporal-spatial similarity fusion module (TSSF). Along spatial axes, it adaptively selects a similar information of dynamic regions. Hinging on the above, we construct a novel approach, DS4D. Experimental results verify our method achieves state-of-the-art (SOTA) results in video-to-4D. In addition, the experiments on a real-world scenario dataset demonstrate its effectiveness on the 4D scene. Our code will be publicly available.
Abstract:Nowadays, transformer networks have demonstrated superior performance in many computer vision tasks. In a multi-view 3D reconstruction algorithm following this paradigm, self-attention processing has to deal with intricate image tokens including massive information when facing heavy amounts of view input. The curse of information content leads to the extreme difficulty of model learning. To alleviate this problem, recent methods compress the token number representing each view or discard the attention operations between the tokens from different views. Obviously, they give a negative impact on performance. Therefore, we propose long-range grouping attention (LGA) based on the divide-and-conquer principle. Tokens from all views are grouped for separate attention operations. The tokens in each group are sampled from all views and can provide macro representation for the resided view. The richness of feature learning is guaranteed by the diversity among different groups. An effective and efficient encoder can be established which connects inter-view features using LGA and extract intra-view features using the standard self-attention layer. Moreover, a novel progressive upsampling decoder is also designed for voxel generation with relatively high resolution. Hinging on the above, we construct a powerful transformer-based network, called LRGT. Experimental results on ShapeNet verify our method achieves SOTA accuracy in multi-view reconstruction. Code will be available at https://github.com/LiyingCV/Long-Range-Grouping-Transformer.