Abstract:The consistency between the semantic information provided by the multi-modal reference and the tracked object is crucial for visual-language (VL) tracking. However, existing VL tracking frameworks rely on static multi-modal references to locate dynamic objects, which can lead to semantic discrepancies and reduce the robustness of the tracker. To address this issue, we propose a novel vision-language tracking framework, named DUTrack, which captures the latest state of the target by dynamically updating multi-modal references to maintain consistency. Specifically, we introduce a Dynamic Language Update Module, which leverages a large language model to generate dynamic language descriptions for the object based on visual features and object category information. Then, we design a Dynamic Template Capture Module, which captures the regions in the image that highly match the dynamic language descriptions. Furthermore, to ensure the efficiency of description generation, we design an update strategy that assesses changes in target displacement, scale, and other factors to decide on updates. Finally, the dynamic template and language descriptions that record the latest state of the target are used to update the multi-modal references, providing more accurate reference information for subsequent inference and enhancing the robustness of the tracker. DUTrack achieves new state-of-the-art performance on four mainstream vision-language and two vision-only tracking benchmarks, including LaSOT, LaSOT$_{\rm{ext}}$, TNL2K, OTB99-Lang, GOT-10K, and UAV123. Code and models are available at https://github.com/GXNU-ZhongLab/DUTrack.
Abstract:Effectively constructing context information with long-term dependencies from video sequences is crucial for object tracking. However, the context length constructed by existing work is limited, only considering object information from adjacent frames or video clips, leading to insufficient utilization of contextual information. To address this issue, we propose MambaLCT, which constructs and utilizes target variation cues from the first frame to the current frame for robust tracking. First, a novel unidirectional Context Mamba module is designed to scan frame features along the temporal dimension, gathering target change cues throughout the entire sequence. Specifically, target-related information in frame features is compressed into a hidden state space through selective scanning mechanism. The target information across the entire video is continuously aggregated into target variation cues. Next, we inject the target change cues into the attention mechanism, providing temporal information for modeling the relationship between the template and search frames. The advantage of MambaLCT is its ability to continuously extend the length of the context, capturing complete target change cues, which enhances the stability and robustness of the tracker. Extensive experiments show that long-term context information enhances the model's ability to perceive targets in complex scenarios. MambaLCT achieves new SOTA performance on six benchmarks while maintaining real-time running speeds.