Abstract:Vision Language Models (VLMs) have exhibited remarkable generalization capabilities, yet their robustness in dynamic real-world scenarios remains largely unexplored. To systematically evaluate VLMs' robustness to real-world 3D variations, we propose AdvDreamer, the first framework that generates physically reproducible adversarial 3D transformation (Adv-3DT) samples from single-view images. AdvDreamer integrates advanced generative techniques with two key innovations and aims to characterize the worst-case distributions of 3D variations from natural images. To ensure adversarial effectiveness and method generality, we introduce an Inverse Semantic Probability Objective that executes adversarial optimization on fundamental vision-text alignment spaces, which can be generalizable across different VLM architectures and downstream tasks. To mitigate the distribution discrepancy between generated and real-world samples while maintaining physical reproducibility, we design a Naturalness Reward Model that provides regularization feedback during adversarial optimization, preventing convergence towards hallucinated and unnatural elements. Leveraging AdvDreamer, we establish MM3DTBench, the first VQA dataset for benchmarking VLMs' 3D variations robustness. Extensive evaluations on representative VLMs with diverse architectures highlight that 3D variations in the real world may pose severe threats to model performance across various tasks.
Abstract:Despite the superior capabilities of Multimodal Large Language Models (MLLMs) across diverse tasks, they still face significant trustworthiness challenges. Yet, current literature on the assessment of trustworthy MLLMs remains limited, lacking a holistic evaluation to offer thorough insights into future improvements. In this work, we establish MultiTrust, the first comprehensive and unified benchmark on the trustworthiness of MLLMs across five primary aspects: truthfulness, safety, robustness, fairness, and privacy. Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts, encompassing 32 diverse tasks with self-curated datasets. Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks, highlighting the complexities introduced by the multimodality and underscoring the necessity for advanced methodologies to enhance their reliability. For instance, typical proprietary models still struggle with the perception of visually confusing images and are vulnerable to multimodal jailbreaking and adversarial attacks; MLLMs are more inclined to disclose privacy in text and reveal ideological and cultural biases even when paired with irrelevant images in inference, indicating that the multimodality amplifies the internal risks from base LLMs. Additionally, we release a scalable toolbox for standardized trustworthiness research, aiming to facilitate future advancements in this important field. Code and resources are publicly available at: https://multi-trust.github.io/.
Abstract:Vision-Language Pre-training (VLP) models like CLIP have achieved remarkable success in computer vision and particularly demonstrated superior robustness to distribution shifts of 2D images. However, their robustness under 3D viewpoint variations is still limited, which can hinder the development for real-world applications. This paper successfully addresses this concern while keeping VLPs' original performance by breaking through two primary obstacles: 1) the scarcity of training data and 2) the suboptimal fine-tuning paradigms. To combat data scarcity, we build the Multi-View Caption (MVCap) dataset -- a comprehensive collection of over four million multi-view image-text pairs across more than 100K objects, providing more potential for VLP models to develop generalizable viewpoint-invariant representations. To address the limitations of existing paradigms in performance trade-offs and training efficiency, we design a novel fine-tuning framework named Omniview-Tuning (OVT). Specifically, OVT introduces a Cross-Viewpoint Alignment objective through a minimax-like optimization strategy, which effectively aligns representations of identical objects from diverse viewpoints without causing overfitting. Additionally, OVT fine-tunes VLP models in a parameter-efficient manner, leading to minimal computational cost. Extensive experiments on various VLP models with different architectures validate that OVT significantly improves the models' resilience to viewpoint shifts and keeps the original performance, establishing a pioneering standard for boosting the viewpoint invariance of VLP models.
Abstract:As physical adversarial attacks become extensively applied in unearthing the potential risk of security-critical scenarios, especially in autonomous driving, their vulnerability to environmental changes has also been brought to light. The non-robust nature of physical adversarial attack methods brings less-than-stable performance consequently. To enhance the robustness of physical adversarial attacks in the real world, instead of statically optimizing a robust adversarial example via an off-line training manner like the existing methods, this paper proposes a brand new robust adversarial attack framework: Embodied Adversarial Attack (EAA) from the perspective of dynamic adaptation, which aims to employ the paradigm of embodied intelligence: Perception-Decision-Control to dynamically adjust the optimal attack strategy according to the current situations in real time. For the perception module, given the challenge of needing simulation for the victim's viewpoint, EAA innovatively devises a Perspective Transformation Network to estimate the target's transformation from the attacker's perspective. For the decision and control module, EAA adopts the laser-a highly manipulable medium to implement physical attacks, and further trains an attack agent with reinforcement learning to make it capable of instantaneously determining the best attack strategy based on the perceived information. Finally, we apply our framework to the autonomous driving scenario. A variety of experiments verify the high effectiveness of our method under complex scenes.
Abstract:Compared with transferable untargeted attacks, transferable targeted adversarial attacks could specify the misclassification categories of adversarial samples, posing a greater threat to security-critical tasks. In the meanwhile, 3D adversarial samples, due to their potential of multi-view robustness, can more comprehensively identify weaknesses in existing deep learning systems, possessing great application value. However, the field of transferable targeted 3D adversarial attacks remains vacant. The goal of this work is to develop a more effective technique that could generate transferable targeted 3D adversarial examples, filling the gap in this field. To achieve this goal, we design a novel framework named TT3D that could rapidly reconstruct from few multi-view images into Transferable Targeted 3D textured meshes. While existing mesh-based texture optimization methods compute gradients in the high-dimensional mesh space and easily fall into local optima, leading to unsatisfactory transferability and distinct distortions, TT3D innovatively performs dual optimization towards both feature grid and Multi-layer Perceptron (MLP) parameters in the grid-based NeRF space, which significantly enhances black-box transferability while enjoying naturalness. Experimental results show that TT3D not only exhibits superior cross-model transferability but also maintains considerable adaptability across different renders and vision tasks. More importantly, we produce 3D adversarial examples with 3D printing techniques in the real world and verify their robust performance under various scenarios.
Abstract:Physical adversarial attacks have put a severe threat to DNN-based object detectors. To enhance security, a combination of visible and infrared sensors is deployed in various scenarios, which has proven effective in disabling existing single-modal physical attacks. To further demonstrate the potential risks in such cases, we design a unified adversarial patch that can perform cross-modal physical attacks, achieving evasion in both modalities simultaneously with a single patch. Given the different imaging mechanisms of visible and infrared sensors, our work manipulates patches' shape features, which can be captured in different modalities when they undergo changes. To deal with challenges, we propose a novel boundary-limited shape optimization approach that aims to achieve compact and smooth shapes for the adversarial patch, making it easy to implement in the physical world. And a score-aware iterative evaluation method is also introduced to balance the fooling degree between visible and infrared detectors during optimization, which guides the adversarial patch to iteratively reduce the predicted scores of the multi-modal sensors. Furthermore, we propose an Affine-Transformation-based enhancement strategy that makes the learnable shape robust to various angles, thus mitigating the issue of shape deformation caused by different shooting angles in the real world. Our method is evaluated against several state-of-the-art object detectors, achieving an Attack Success Rate (ASR) of over 80%. We also demonstrate the effectiveness of our approach in physical-world scenarios under various settings, including different angles, distances, postures, and scenes for both visible and infrared sensors.
Abstract:Recently, physical adversarial attacks have been presented to evade DNNs-based object detectors. To ensure the security, many scenarios are simultaneously deployed with visible sensors and infrared sensors, leading to the failures of these single-modal physical attacks. To show the potential risks under such scenes, we propose a unified adversarial patch to perform cross-modal physical attacks, i.e., fooling visible and infrared object detectors at the same time via a single patch. Considering different imaging mechanisms of visible and infrared sensors, our work focuses on modeling the shapes of adversarial patches, which can be captured in different modalities when they change. To this end, we design a novel boundary-limited shape optimization to achieve the compact and smooth shapes, and thus they can be easily implemented in the physical world. In addition, to balance the fooling degree between visible detector and infrared detector during the optimization process, we propose a score-aware iterative evaluation, which can guide the adversarial patch to iteratively reduce the predicted scores of the multi-modal sensors. We finally test our method against the one-stage detector: YOLOv3 and the two-stage detector: Faster RCNN. Results show that our unified patch achieves an Attack Success Rate (ASR) of 73.33% and 69.17%, respectively. More importantly, we verify the effective attacks in the physical world when visible and infrared sensors shoot the objects under various settings like different angles, distances, postures, and scenes.
Abstract:Hybrid Optimization Software Suite (HOSS), which is a combined finite-discrete element method (FDEM), is one of the advanced approaches to simulating high-fidelity fracture and fragmentation processes but the application of pure HOSS simulation is computationally expensive. At the same time, machine learning methods, shown tremendous success in several scientific problems, are increasingly being considered promising alternatives to physics-based models in the scientific domains. Thus, our goal in this work is to build a new data-driven methodology to reconstruct the crack fracture accurately in the spatial and temporal fields. We leverage physical constraints to regularize the fracture propagation in the long-term reconstruction. In addition, we introduce perceptual loss and several extra pure machine learning optimization approaches to improve the reconstruction performance of fracture data further. We demonstrate the effectiveness of our proposed method through both extrapolation and interpolation experiments. The results confirm that our proposed method can reconstruct high-fidelity fracture data over space and time in terms of pixel-wise reconstruction error and structural similarity. Visual comparisons also show promising results in long-term
Abstract:Due to the contradiction of medical image processing, that is, the application of medical images is more and more widely and the limitation of medical images is difficult to label, few-shot learning technology has begun to receive more attention in the field of medical image processing. This paper proposes a Cross-Reference Transformer for medical image segmentation, which addresses the lack of interaction between the existing Cross-Reference support image and the query image. It can better mine and enhance the similar parts of support features and query features in high-dimensional channels. Experimental results show that the proposed model achieves good results on both CT dataset and MRI dataset.
Abstract:Graph convolutional network (GCN) has been successfully applied to capture global non-consecutive and long-distance semantic information for text classification. However, while GCN-based methods have shown promising results in offline evaluations, they commonly follow a seen-token-seen-document paradigm by constructing a fixed document-token graph and cannot make inferences on new documents. It is a challenge to deploy them in online systems to infer steaming text data. In this work, we present a continual GCN model (ContGCN) to generalize inferences from observed documents to unobserved documents. Concretely, we propose a new all-token-any-document paradigm to dynamically update the document-token graph in every batch during both the training and testing phases of an online system. Moreover, we design an occurrence memory module and a self-supervised contrastive learning objective to update ContGCN in a label-free manner. A 3-month A/B test on Huawei public opinion analysis system shows ContGCN achieves 8.86% performance gain compared with state-of-the-art methods. Offline experiments on five public datasets also show ContGCN can improve inference quality. The source code will be released at https://github.com/Jyonn/ContGCN.