Abstract:Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.
Abstract:Reasoning is a fundamental capability of large language models (LLMs), enabling them to comprehend, analyze, and solve complex problems. In this paper, we introduce TextGames, an innovative benchmark specifically crafted to assess LLMs through demanding text-based games that require advanced skills in pattern recognition, spatial awareness, arithmetic, and logical reasoning. Our analysis probes LLMs' performance in both single-turn and multi-turn reasoning, and their abilities in leveraging feedback to correct subsequent answers through self-reflection. Our findings reveal that, although LLMs exhibit proficiency in addressing most easy and medium-level problems, they face significant challenges with more difficult tasks. In contrast, humans are capable of solving all tasks when given sufficient time. Moreover, we observe that LLMs show improved performance in multi-turn predictions through self-reflection, yet they still struggle with sequencing, counting, and following complex rules consistently. Additionally, models optimized for reasoning outperform pre-trained LLMs that prioritize instruction following, highlighting the crucial role of reasoning skills in addressing highly complex problems.
Abstract:Monocular 3D object detection is a challenging task in autonomous systems due to the lack of explicit depth information in single-view images. Existing methods often depend on external depth estimators or expensive sensors, which increase computational complexity and hinder real-time performance. To overcome these limitations, we propose AuxDepthNet, an efficient framework for real-time monocular 3D object detection that eliminates the reliance on external depth maps or pre-trained depth models. AuxDepthNet introduces two key components: the Auxiliary Depth Feature (ADF) module, which implicitly learns depth-sensitive features to improve spatial reasoning and computational efficiency, and the Depth Position Mapping (DPM) module, which embeds depth positional information directly into the detection process to enable accurate object localization and 3D bounding box regression. Leveraging the DepthFusion Transformer architecture, AuxDepthNet globally integrates visual and depth-sensitive features through depth-guided interactions, ensuring robust and efficient detection. Extensive experiments on the KITTI dataset show that AuxDepthNet achieves state-of-the-art performance, with $\text{AP}_{3D}$ scores of 24.72\% (Easy), 18.63\% (Moderate), and 15.31\% (Hard), and $\text{AP}_{\text{BEV}}$ scores of 34.11\% (Easy), 25.18\% (Moderate), and 21.90\% (Hard) at an IoU threshold of 0.7.
Abstract:With the rise of deep learning, facial recognition technology has seen extensive research and rapid development. Although facial recognition is considered a mature technology, we find that existing open-source models and commercial algorithms lack robustness in certain real-world Out-of-Distribution (OOD) scenarios, raising concerns about the reliability of these systems. In this paper, we introduce OODFace, which explores the OOD challenges faced by facial recognition models from two perspectives: common corruptions and appearance variations. We systematically design 30 OOD scenarios across 9 major categories tailored for facial recognition. By simulating these challenges on public datasets, we establish three robustness benchmarks: LFW-C/V, CFP-FP-C/V, and YTF-C/V. We then conduct extensive experiments on 19 different facial recognition models and 3 commercial APIs, along with extended experiments on face masks, Vision-Language Models (VLMs), and defense strategies to assess their robustness. Based on the results, we draw several key insights, highlighting the vulnerability of facial recognition systems to OOD data and suggesting possible solutions. Additionally, we offer a unified toolkit that includes all corruption and variation types, easily extendable to other datasets. We hope that our benchmarks and findings can provide guidance for future improvements in facial recognition model robustness.
Abstract:Multilingual large language models (LLMs) have gained prominence, but concerns arise regarding their reliability beyond English. This study addresses the gap in cross-lingual semantic evaluation by introducing a novel benchmark for cross-lingual sense disambiguation, StingrayBench. In this paper, we demonstrate using false friends -- words that are orthographically similar but have completely different meanings in two languages -- as a possible approach to pinpoint the limitation of cross-lingual sense disambiguation in LLMs. We collect false friends in four language pairs, namely Indonesian-Malay, Indonesian-Tagalog, Chinese-Japanese, and English-German; and challenge LLMs to distinguish the use of them in context. In our analysis of various models, we observe they tend to be biased toward higher-resource languages. We also propose new metrics for quantifying the cross-lingual sense bias and comprehension based on our benchmark. Our work contributes to developing more diverse and inclusive language modeling, promoting fairer access for the wider multilingual community.
Abstract:We employ new tools from mechanistic interpretability in order to ask whether the internal structure of large language models (LLMs) shows correspondence to the linguistic structures which underlie the languages on which they are trained. In particular, we ask (1) when two languages employ the same morphosyntactic processes, do LLMs handle them using shared internal circuitry? and (2) when two languages require different morphosyntactic processes, do LLMs handle them using different internal circuitry? Using English and Chinese multilingual and monolingual models, we analyze the internal circuitry involved in two tasks. We find evidence that models employ the same circuit to handle the same syntactic process independently of the language in which it occurs, and that this is the case even for monolingual models trained completely independently. Moreover, we show that multilingual models employ language-specific components (attention heads and feed-forward networks) when needed to handle linguistic processes (e.g., morphological marking) that only exist in some languages. Together, our results provide new insights into how LLMs trade off between exploiting common structures and preserving linguistic differences when tasked with modeling multiple languages simultaneously.
Abstract:Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, we introduce SEACrowd, a collaborative initiative that consolidates a comprehensive resource hub that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in SEA.
Abstract:Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning.
Abstract:Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
Abstract:Multilingual Large Language Models (LLMs) have recently shown great capability in various tasks, exhibiting state-of-the-art performance using few-shot or zero-shot prompting methods. While these models have been extensively studied in tasks where inputs are assumed to be in a single language, less attention has been paid to exploring their performance when inputs involve code-switching (CSW). In this paper, we provide an extensive empirical study of various multilingual LLMs and benchmark their performance in three tasks: sentiment analysis, machine translation, and word-level language identification. Our findings indicate that despite multilingual LLMs showing promising outcomes in certain tasks when using zero-/few-shot prompting, their performance still falls short on average when compared to smaller finetuned models. We argue that LLMs that are "multilingual" are not necessarily code-switching compatible and extensive future research is required to fully bridge this gap.