Abstract:Hallucinations in large vision-language models (LVLMs) are a significant challenge, i.e., generating objects that are not presented in the visual input, which impairs their reliability. Recent studies often attribute hallucinations to a lack of understanding of visual input, yet ignore a more fundamental issue: the model's inability to effectively extract or decouple visual features. In this paper, we revisit the hallucinations in LVLMs from an architectural perspective, investigating whether the primary cause lies in the visual encoder (feature extraction) or the modal alignment module (feature decoupling). Motivated by our findings on the preliminary investigation, we propose a novel tuning strategy, PATCH, to mitigate hallucinations in LVLMs. This plug-and-play method can be integrated into various LVLMs, utilizing adaptive virtual tokens to extract object features from bounding boxes, thereby addressing hallucinations caused by insufficient decoupling of visual features. PATCH achieves state-of-the-art performance on multiple multi-modal hallucination datasets. We hope this approach provides researchers with deeper insights into the underlying causes of hallucinations in LVLMs, fostering further advancements and innovation in this field.
Abstract:Despite the superior capabilities of Multimodal Large Language Models (MLLMs) across diverse tasks, they still face significant trustworthiness challenges. Yet, current literature on the assessment of trustworthy MLLMs remains limited, lacking a holistic evaluation to offer thorough insights into future improvements. In this work, we establish MultiTrust, the first comprehensive and unified benchmark on the trustworthiness of MLLMs across five primary aspects: truthfulness, safety, robustness, fairness, and privacy. Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts, encompassing 32 diverse tasks with self-curated datasets. Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks, highlighting the complexities introduced by the multimodality and underscoring the necessity for advanced methodologies to enhance their reliability. For instance, typical proprietary models still struggle with the perception of visually confusing images and are vulnerable to multimodal jailbreaking and adversarial attacks; MLLMs are more inclined to disclose privacy in text and reveal ideological and cultural biases even when paired with irrelevant images in inference, indicating that the multimodality amplifies the internal risks from base LLMs. Additionally, we release a scalable toolbox for standardized trustworthiness research, aiming to facilitate future advancements in this important field. Code and resources are publicly available at: https://multi-trust.github.io/.
Abstract:Despite the widespread application of large language models (LLMs) across various tasks, recent studies indicate that they are susceptible to jailbreak attacks, which can render their defense mechanisms ineffective. However, previous jailbreak research has frequently been constrained by limited universality, suboptimal efficiency, and a reliance on manual crafting. In response, we rethink the approach to jailbreaking LLMs and formally define three essential properties from the attacker' s perspective, which contributes to guiding the design of jailbreak methods. We further introduce AutoBreach, a novel method for jailbreaking LLMs that requires only black-box access. Inspired by the versatility of wordplay, AutoBreach employs a wordplay-guided mapping rule sampling strategy to generate a variety of universal mapping rules for creating adversarial prompts. This generation process leverages LLMs' automatic summarization and reasoning capabilities, thus alleviating the manual burden. To boost jailbreak success rates, we further suggest sentence compression and chain-of-thought-based mapping rules to correct errors and wordplay misinterpretations in target LLMs. Additionally, we propose a two-stage mapping rule optimization strategy that initially optimizes mapping rules before querying target LLMs to enhance the efficiency of AutoBreach. AutoBreach can efficiently identify security vulnerabilities across various LLMs, including three proprietary models: Claude-3, GPT-3.5, GPT-4 Turbo, and two LLMs' web platforms: Bingchat, GPT-4 Web, achieving an average success rate of over 80% with fewer than 10 queries
Abstract:Multimodal Large Language Models (MLLMs) that integrate text and other modalities (especially vision) have achieved unprecedented performance in various multimodal tasks. However, due to the unsolved adversarial robustness problem of vision models, MLLMs can have more severe safety and security risks by introducing the vision inputs. In this work, we study the adversarial robustness of Google's Bard, a competitive chatbot to ChatGPT that released its multimodal capability recently, to better understand the vulnerabilities of commercial MLLMs. By attacking white-box surrogate vision encoders or MLLMs, the generated adversarial examples can mislead Bard to output wrong image descriptions with a 22% success rate based solely on the transferability. We show that the adversarial examples can also attack other MLLMs, e.g., a 26% attack success rate against Bing Chat and a 86% attack success rate against ERNIE bot. Moreover, we identify two defense mechanisms of Bard, including face detection and toxicity detection of images. We design corresponding attacks to evade these defenses, demonstrating that the current defenses of Bard are also vulnerable. We hope this work can deepen our understanding on the robustness of MLLMs and facilitate future research on defenses. Our code is available at https://github.com/thu-ml/Attack-Bard.
Abstract:Strong adversarial examples are the keys to evaluating and enhancing the robustness of deep neural networks. The popular adversarial attack algorithms maximize the non-concave loss function using the gradient ascent. However, the performance of each attack is usually sensitive to, for instance, minor image transformations due to insufficient information (only one input example, few white-box source models and unknown defense strategies). Hence, the crafted adversarial examples are prone to overfit the source model, which limits their transferability to unidentified architectures. In this paper, we propose Multiple Asymptotically Normal Distribution Attacks (MultiANDA), a novel method that explicitly characterizes adversarial perturbations from a learned distribution. Specifically, we approximate the posterior distribution over the perturbations by taking advantage of the asymptotic normality property of stochastic gradient ascent (SGA), then apply the ensemble strategy on this procedure to estimate a Gaussian mixture model for a better exploration of the potential optimization space. Drawing perturbations from the learned distribution allow us to generate any number of adversarial examples for each input. The approximated posterior essentially describes the stationary distribution of SGA iterations, which captures the geometric information around the local optimum. Thus, the samples drawn from the distribution reliably maintain the transferability. Our proposed method outperforms nine state-of-the-art black-box attacks on deep learning models with or without defenses through extensive experiments on seven normally trained and seven defence models.