Abstract:Federated learning, a novel paradigm designed to protect data privacy, is vulnerable to backdoor attacks due to its distributed nature. Current research often designs attacks based on a single attacker with a single backdoor, overlooking more realistic and complex threats in federated learning. We propose a more practical threat model for federated learning: the distributed multi-target backdoor. In this model, multiple attackers control different clients, embedding various triggers and targeting different classes, collaboratively implanting backdoors into the global model via central aggregation. Empirical validation shows that existing methods struggle to maintain the effectiveness of multiple backdoors in the global model. Our key insight is that similar backdoor triggers cause parameter conflicts and injecting new backdoors disrupts gradient directions, significantly weakening some backdoors performance. To solve this, we propose a Distributed Multi-Target Backdoor Attack (DMBA), ensuring efficiency and persistence of backdoors from different malicious clients. To avoid parameter conflicts, we design a multi-channel dispersed frequency trigger strategy to maximize trigger differences. To mitigate gradient interference, we introduce backdoor replay in local training to neutralize conflicting gradients. Extensive validation shows that 30 rounds after the attack, Attack Success Rates of three different backdoors from various clients remain above 93%. The code will be made publicly available after the review period.
Abstract:Adapting large pre-trained foundation models, e.g., SAM, for medical image segmentation remains a significant challenge. A crucial step involves the formulation of a series of specialized prompts that incorporate specific clinical instructions. Past works have been heavily reliant on a singular type of prompt for each instance, necessitating manual input of an ideally correct prompt, which is less efficient. To tackle this issue, we propose to utilize prompts of different granularity, which are sourced from original images to provide a broader scope of clinical insights. However, combining prompts of varying types can pose a challenge due to potential conflicts. In response, we have designed a coarse-to-fine mechanism, referred to as curriculum prompting, that progressively integrates prompts of different types. Through extensive experiments on three public medical datasets across various modalities, we demonstrate the effectiveness of our proposed approach, which not only automates the prompt generation process but also yields superior performance compared to other SAM-based medical image segmentation methods. Code is available at: https://github.com/AnnaZzz-zxq/Curriculum-Prompting.
Abstract:SOTA facial expression recognition (FER) methods fail on test sets that have domain gaps with the train set. Recent domain adaptation FER methods need to acquire labeled or unlabeled samples of target domains to fine-tune the FER model, which might be infeasible in real-world deployment. In this paper, we aim to improve the zero-shot generalization ability of FER methods on different unseen test sets using only one train set. Inspired by how humans first detect faces and then select expression features, we propose a novel FER pipeline to extract expression-related features from any given face images. Our method is based on the generalizable face features extracted by large models like CLIP. However, it is non-trivial to adapt the general features of CLIP for specific tasks like FER. To preserve the generalization ability of CLIP and the high precision of the FER model, we design a novel approach that learns sigmoid masks based on the fixed CLIP face features to extract expression features. To further improve the generalization ability on unseen test sets, we separate the channels of the learned masked features according to the expression classes to directly generate logits and avoid using the FC layer to reduce overfitting. We also introduce a channel-diverse loss to make the learned masks separated. Extensive experiments on five different FER datasets verify that our method outperforms SOTA FER methods by large margins. Code is available in https://github.com/zyh-uaiaaaa/Generalizable-FER.
Abstract:Story visualization aims to create visually compelling images or videos corresponding to textual narratives. Despite recent advances in diffusion models yielding promising results, existing methods still struggle to create a coherent sequence of subject-consistent frames based solely on a story. To this end, we propose DreamStory, an automatic open-domain story visualization framework by leveraging the LLMs and a novel multi-subject consistent diffusion model. DreamStory consists of (1) an LLM acting as a story director and (2) an innovative Multi-Subject consistent Diffusion model (MSD) for generating consistent multi-subject across the images. First, DreamStory employs the LLM to generate descriptive prompts for subjects and scenes aligned with the story, annotating each scene's subjects for subsequent subject-consistent generation. Second, DreamStory utilizes these detailed subject descriptions to create portraits of the subjects, with these portraits and their corresponding textual information serving as multimodal anchors (guidance). Finally, the MSD uses these multimodal anchors to generate story scenes with consistent multi-subject. Specifically, the MSD includes Masked Mutual Self-Attention (MMSA) and Masked Mutual Cross-Attention (MMCA) modules. MMSA and MMCA modules ensure appearance and semantic consistency with reference images and text, respectively. Both modules employ masking mechanisms to prevent subject blending. To validate our approach and promote progress in story visualization, we established a benchmark, DS-500, which can assess the overall performance of the story visualization framework, subject-identification accuracy, and the consistency of the generation model. Extensive experiments validate the effectiveness of DreamStory in both subjective and objective evaluations. Please visit our project homepage at https://dream-xyz.github.io/dreamstory.
Abstract:Early and accurate detection of anomalous events on the freeway, such as accidents, can improve emergency response and clearance. However, existing delays and errors in event identification and reporting make it a difficult problem to solve. Current large-scale freeway traffic datasets are not designed for anomaly detection and ignore these challenges. In this paper, we introduce the first large-scale lane-level freeway traffic dataset for anomaly detection. Our dataset consists of a month of weekday radar detection sensor data collected in 4 lanes along an 18-mile stretch of Interstate 24 heading toward Nashville, TN, comprising over 3.7 million sensor measurements. We also collect official crash reports from the Nashville Traffic Management Center and manually label all other potential anomalies in the dataset. To show the potential for our dataset to be used in future machine learning and traffic research, we benchmark numerous deep learning anomaly detection models on our dataset. We find that unsupervised graph neural network autoencoders are a promising solution for this problem and that ignoring spatial relationships leads to decreased performance. We demonstrate that our methods can reduce reporting delays by over 10 minutes on average while detecting 75% of crashes. Our dataset and all preprocessing code needed to get started are publicly released at https://vu.edu/ft-aed/ to facilitate future research.
Abstract:Sora unveils the potential of scaling Diffusion Transformer for generating photorealistic images and videos at arbitrary resolutions, aspect ratios, and durations, yet it still lacks sufficient implementation details. In this technical report, we introduce the Lumina-T2X family - a series of Flow-based Large Diffusion Transformers (Flag-DiT) equipped with zero-initialized attention, as a unified framework designed to transform noise into images, videos, multi-view 3D objects, and audio clips conditioned on text instructions. By tokenizing the latent spatial-temporal space and incorporating learnable placeholders such as [nextline] and [nextframe] tokens, Lumina-T2X seamlessly unifies the representations of different modalities across various spatial-temporal resolutions. This unified approach enables training within a single framework for different modalities and allows for flexible generation of multimodal data at any resolution, aspect ratio, and length during inference. Advanced techniques like RoPE, RMSNorm, and flow matching enhance the stability, flexibility, and scalability of Flag-DiT, enabling models of Lumina-T2X to scale up to 7 billion parameters and extend the context window to 128K tokens. This is particularly beneficial for creating ultra-high-definition images with our Lumina-T2I model and long 720p videos with our Lumina-T2V model. Remarkably, Lumina-T2I, powered by a 5-billion-parameter Flag-DiT, requires only 35% of the training computational costs of a 600-million-parameter naive DiT. Our further comprehensive analysis underscores Lumina-T2X's preliminary capability in resolution extrapolation, high-resolution editing, generating consistent 3D views, and synthesizing videos with seamless transitions. We expect that the open-sourcing of Lumina-T2X will further foster creativity, transparency, and diversity in the generative AI community.
Abstract:Backdoors on federated learning will be diluted by subsequent benign updates. This is reflected in the significant reduction of attack success rate as iterations increase, ultimately failing. We use a new metric to quantify the degree of this weakened backdoor effect, called attack persistence. Given that research to improve this performance has not been widely noted,we propose a Full Combination Backdoor Attack (FCBA) method. It aggregates more combined trigger information for a more complete backdoor pattern in the global model. Trained backdoored global model is more resilient to benign updates, leading to a higher attack success rate on the test set. We test on three datasets and evaluate with two models across various settings. FCBA's persistence outperforms SOTA federated learning backdoor attacks. On GTSRB, postattack 120 rounds, our attack success rate rose over 50% from baseline. The core code of our method is available at https://github.com/PhD-TaoLiu/FCBA.
Abstract:With the comprehensive research conducted on various face analysis tasks, there is a growing interest among researchers to develop a unified approach to face perception. Existing methods mainly discuss unified representation and training, which lack task extensibility and application efficiency. To tackle this issue, we focus on the unified model structure, exploring a face generalist model. As an intuitive design, Naive Faceptor enables tasks with the same output shape and granularity to share the structural design of the standardized output head, achieving improved task extensibility. Furthermore, Faceptor is proposed to adopt a well-designed single-encoder dual-decoder architecture, allowing task-specific queries to represent new-coming semantics. This design enhances the unification of model structure while improving application efficiency in terms of storage overhead. Additionally, we introduce Layer-Attention into Faceptor, enabling the model to adaptively select features from optimal layers to perform the desired tasks. Through joint training on 13 face perception datasets, Faceptor achieves exceptional performance in facial landmark localization, face parsing, age estimation, expression recognition, binary attribute classification, and face recognition, achieving or surpassing specialized methods in most tasks. Our training framework can also be applied to auxiliary supervised learning, significantly improving performance in data-sparse tasks such as age estimation and expression recognition. The code and models will be made publicly available at https://github.com/lxq1000/Faceptor.
Abstract:This paper introduces a novel approach that seeks a middle ground for traffic control in multi-lane congestion, where prevailing traffic speeds are too fast, and speed recommendations designed to dampen traffic waves are too slow. Advanced controllers that modify the speed of an automated car for wave-dampening, eco-driving, or other goals, typically are designed with forward collision safety in mind. Our approach goes further, by considering how dangerous it can be for a controller to drive so slowly relative to prevailing traffic that it creates a significant issue for safety and comfort. This paper explores open-road scenarios where large gaps between prevailing speeds and desired speeds can exist, specifically when infrastructure-based variable speed limit systems are not strictly followed at all times by other drivers. Our designed, implemented, and deployed algorithm is able to follow variable speed limits when others also follow it, avoid collisions with vehicles ahead, and adapt to prevailing traffic when other motorists are traveling well above the posted speeds. The key is to reject unsafe speed recommendations from infrastructure-based traffic smoothing systems, based on real-time local traffic conditions observed by the vehicle under control. This solution is implemented and deployed on two control vehicles in heavy multi-lane highway congestion. The results include analysis from system design, and field tests that validate the system's performance using an existing Variable Speed Limit system as the external source for speed recommendations, and the on-board sensors of a stock Toyota Rav4 for inputs that estimate the prevailing speed of traffic around the vehicle under control.
Abstract:Facial expression recognition (FER) models are typically trained on datasets with a fixed number of seven basic classes. However, recent research works point out that there are far more expressions than the basic ones. Thus, when these models are deployed in the real world, they may encounter unknown classes, such as compound expressions that cannot be classified into existing basic classes. To address this issue, we propose the open-set FER task for the first time. Though there are many existing open-set recognition methods, we argue that they do not work well for open-set FER because FER data are all human faces with very small inter-class distances, which makes the open-set samples very similar to close-set samples. In this paper, we are the first to transform the disadvantage of small inter-class distance into an advantage by proposing a new way for open-set FER. Specifically, we find that small inter-class distance allows for sparsely distributed pseudo labels of open-set samples, which can be viewed as symmetric noisy labels. Based on this novel observation, we convert the open-set FER to a noisy label detection problem. We further propose a novel method that incorporates attention map consistency and cycle training to detect the open-set samples. Extensive experiments on various FER datasets demonstrate that our method clearly outperforms state-of-the-art open-set recognition methods by large margins. Code is available at https://github.com/zyh-uaiaaaa.