Abstract:The driving interaction-a critical yet complex aspect of daily driving-lies at the core of autonomous driving research. However, real-world driving scenarios sparsely capture rich interaction events, limiting the availability of comprehensive trajectory datasets for this purpose. To address this challenge, we present InterHub, a dense interaction dataset derived by mining interaction events from extensive naturalistic driving records. We employ formal methods to describe and extract multi-agent interaction events, exposing the limitations of existing autonomous driving solutions. Additionally, we introduce a user-friendly toolkit enabling the expansion of InterHub with both public and private data. By unifying, categorizing, and analyzing diverse interaction events, InterHub facilitates cross-comparative studies and large-scale research, thereby advancing the evaluation and development of autonomous driving technologies.
Abstract:The cooperative driving technology of Connected and Autonomous Vehicles (CAVs) is crucial for improving the efficiency and safety of transportation systems. Learning-based methods, such as Multi-Agent Reinforcement Learning (MARL), have demonstrated strong capabilities in cooperative decision-making tasks. However, existing MARL approaches still face challenges in terms of learning efficiency and performance. In recent years, Large Language Models (LLMs) have rapidly advanced and shown remarkable abilities in various sequential decision-making tasks. To enhance the learning capabilities of cooperative agents while ensuring decision-making efficiency and cost-effectiveness, we propose LDPD, a language-driven policy distillation method for guiding MARL exploration. In this framework, a teacher agent based on LLM trains smaller student agents to achieve cooperative decision-making through its own decision-making demonstrations. The teacher agent enhances the observation information of CAVs and utilizes LLMs to perform complex cooperative decision-making reasoning, which also leverages carefully designed decision-making tools to achieve expert-level decisions, providing high-quality teaching experiences. The student agent then refines the teacher's prior knowledge into its own model through gradient policy updates. The experiments demonstrate that the students can rapidly improve their capabilities with minimal guidance from the teacher and eventually surpass the teacher's performance. Extensive experiments show that our approach demonstrates better performance and learning efficiency compared to baseline methods.
Abstract:The development of autonomous vehicles has shown great potential to enhance the efficiency and safety of transportation systems. However, the decision-making issue in complex human-machine mixed traffic scenarios, such as unsignalized intersections, remains a challenge for autonomous vehicles. While reinforcement learning (RL) has been used to solve complex decision-making problems, existing RL methods still have limitations in dealing with cooperative decision-making of multiple connected autonomous vehicles (CAVs), ensuring safety during exploration, and simulating realistic human driver behaviors. In this paper, a novel and efficient algorithm, Multi-Agent Game-prior Attention Deep Deterministic Policy Gradient (MA-GA-DDPG), is proposed to address these limitations. Our proposed algorithm formulates the decision-making problem of CAVs at unsignalized intersections as a decentralized multi-agent reinforcement learning problem and incorporates an attention mechanism to capture interaction dependencies between ego CAV and other agents. The attention weights between the ego vehicle and other agents are then used to screen interaction objects and obtain prior hierarchical game relations, based on which a safety inspector module is designed to improve the traffic safety. Furthermore, both simulation and hardware-in-the-loop experiments were conducted, demonstrating that our method outperforms other baseline approaches in terms of driving safety, efficiency, and comfort.
Abstract:In the emerging hybrid traffic flow environment, which includes both human-driven vehicles (HDVs) and autonomous vehicles (AVs), ensuring safe and robust decision-making and control is crucial for the effective operation of autonomous vehicle platooning. Current systems for cooperative adaptive cruise control and lane changing are inadequate in responding to real-world emergency situations, limiting the potential of autonomous vehicle platooning technology. To address the aforementioned challenges, we propose a Twin-World Safety-Enhanced Data-Model-Knowledge Hybrid-Driven autonomous vehicle platooning Cooperative Control Framework. Within this framework, a deep reinforcement learning formation decision model integrating traffic priors is designed, and a twin-world deduction model based on safety priority judgment is proposed. Subsequently, an optimal control-based multi-scenario decision-control right adaptive switching mechanism is designed to achieve adaptive switching between data-driven and model-driven methods. Through simulation experiments and hardware-in-loop tests, our algorithm has demonstrated excellent performance in terms of safety, robustness, and flexibility. A detailed account of the validation results for the model can be found in \url{https://perfectxu88.github.io/towardssafeandrobust.github.io/}.
Abstract:Vehicle-to-Vehicle (V2V) technologies have great potential for enhancing traffic flow efficiency and safety. However, cooperative decision-making in multi-agent systems, particularly in complex human-machine mixed merging areas, remains challenging for connected and autonomous vehicles (CAVs). Intent sharing, a key aspect of human coordination, may offer an effective solution to these decision-making problems, but its application in CAVs is under-explored. This paper presents an intent-sharing-based cooperative method, the Multi-Agent Proximal Policy Optimization with Prior Intent Sharing (MAPPO-PIS), which models the CAV cooperative decision-making problem as a Multi-Agent Reinforcement Learning (MARL) problem. It involves training and updating the agents' policies through the integration of two key modules: the Intention Generator Module (IGM) and the Safety Enhanced Module (SEM). The IGM is specifically crafted to generate and disseminate CAVs' intended trajectories spanning multiple future time-steps. On the other hand, the SEM serves a crucial role in assessing the safety of the decisions made and rectifying them if necessary. Merging area with human-machine mixed traffic flow is selected to validate our method. Results show that MAPPO-PIS significantly improves decision-making performance in multi-agent systems, surpassing state-of-the-art baselines in safety, efficiency, and overall traffic system performance. The code and video demo can be found at: \url{https://github.com/CCCC1dhcgd/A-MAPPO-PIS}.
Abstract:In the domain of autonomous vehicles (AVs), decision-making is a critical factor that significantly influences the efficacy of autonomous navigation. As the field progresses, the enhancement of decision-making capabilities in complex environments has become a central area of research within data-driven methodologies. Despite notable advances, existing learning-based decision-making strategies in autonomous vehicles continue to reveal opportunities for further refinement, particularly in the articulation of policies and the assurance of safety. In this study, the decision-making challenges associated with autonomous vehicles are conceptualized through the framework of the Constrained Markov Decision Process (CMDP) and approached as a sequence modeling problem. Utilizing the Generative Pre-trained Transformer (GPT), we introduce a novel decision-making model tailored for AVs, which incorporates entropy regularization techniques to bolster exploration and enhance safety performance. Comprehensive experiments conducted across various scenarios affirm that our approach surpasses several established baseline methods, particularly in terms of safety and overall efficacy.
Abstract:Assessing drivers' interaction capabilities is crucial for understanding human driving behavior and enhancing the interactive abilities of autonomous vehicles. In scenarios involving strong interaction, existing metrics focused on interaction outcomes struggle to capture the evolutionary process of drivers' interactive behaviors, making it challenging for autonomous vehicles to dynamically assess and respond to other agents during interactions. To address this issue, we propose a framework for assessing drivers' interaction capabilities, oriented towards the interactive process itself, which includes three components: Interaction Risk Perception, Interaction Process Modeling, and Interaction Ability Scoring. We quantify interaction risks through motion state estimation and risk field theory, followed by introducing a dynamic action assessment benchmark based on a game-theoretical rational agent model, and designing a capability scoring metric based on morphological similarity distance. By calculating real-time differences between a driver's actions and the assessment benchmark, the driver's interaction capabilities are scored dynamically. We validated our framework at unsignalized intersections as a typical scenario. Validation analysis on driver behavior datasets from China and the USA shows that our framework effectively distinguishes and evaluates conservative and aggressive driving states during interactions, demonstrating good adaptability and effectiveness in various regional settings.
Abstract:Decision-making stands as a pivotal component in the realm of autonomous vehicles (AVs), playing a crucial role in navigating the intricacies of autonomous driving. Amidst the evolving landscape of data-driven methodologies, enhancing decision-making performance in complex scenarios has emerged as a prominent research focus. Despite considerable advancements, current learning-based decision-making approaches exhibit potential for refinement, particularly in aspects of policy articulation and safety assurance. To address these challenges, we introduce DDM-Lag, a Diffusion Decision Model,augmented with Lagrangian-based safety enhancements.In our approach, the autonomous driving decision-making conundrum is conceptualized as a Constrained Markov Decision Process (CMDP). We have crafted an Actor-Critic framework, wherein the diffusion model is employed as the actor,facilitating policy exploration and learning. The integration of safety constraints in the CMDP and the adoption of a Lagrangian relaxation-based policy optimization technique ensure enhanced decision safety. A PID controller is employed for the stable updating of model parameters. The effectiveness of DDM-Lag is evaluated through different driving tasks, showcasing improvements in decision-making safety and overall performance compared to baselines.
Abstract:The integration of Autonomous Vehicles (AVs) into existing human-driven traffic systems poses considerable challenges, especially within environments where human and machine interactions are frequent and complex, such as at unsignalized intersections. Addressing these challenges, we introduce a novel framework predicated on dynamic and socially-aware decision-making game theory to augment the social decision-making prowess of AVs in mixed driving environments.This comprehensive framework is delineated into three primary modules: Social Tendency Recognition, Mixed-Strategy Game Modeling, and Expert Mode Learning. We introduce 'Interaction Orientation' as a metric to evaluate the social decision-making tendencies of various agents, incorporating both environmental factors and trajectory data. The mixed-strategy game model developed as part of this framework considers the evolution of future traffic scenarios and includes a utility function that balances safety, operational efficiency, and the unpredictability of environmental conditions. To adapt to real-world driving complexities, our framework utilizes dynamic optimization techniques for assimilating and learning from expert human driving strategies. These strategies are compiled into a comprehensive library, serving as a reference for future decision-making processes. Our approach is validated through extensive driving datasets, and the results demonstrate marked enhancements in decision timing, precision.
Abstract:The advent of autonomous vehicles (AVs) alongside human-driven vehicles (HVs) has ushered in an era of mixed traffic flow, presenting a significant challenge: the intricate interaction between these entities within complex driving environments. AVs are expected to have human-like driving behavior to seamlessly integrate into human-dominated traffic systems. To address this issue, we propose a reinforcement learning framework that considers driving priors and Social Coordination Awareness (SCA) to optimize the behavior of AVs. The framework integrates a driving prior learning (DPL) model based on a variational autoencoder to infer the driver's driving priors from human drivers' trajectories. A policy network based on a multi-head attention mechanism is designed to effectively capture the interactive dependencies between AVs and other traffic participants to improve decision-making quality. The introduction of SCA into the autonomous driving decision-making system, and the use of Coordination Tendency (CT) to quantify the willingness of AVs to coordinate the traffic system is explored. Simulation results show that the proposed framework can not only improve the decision-making quality of AVs but also motivate them to produce social behaviors, with potential benefits for the safety and traffic efficiency of the entire transportation system.