Abstract:The success of Large Language Models (LLM) has led researchers to explore Multimodal Large Language Models (MLLM) for unified visual and linguistic understanding. However, the increasing model size and computational complexity of MLLM limit their use in resource-constrained environments. Small-scale MLLM (s-MLLM) aims to retain the capabilities of the large-scale model (l-MLLM) while reducing computational demands, but resulting in a significant decline in performance. To address the aforementioned issues, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLM to s-MLLM. Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM, and Relation Distillation (RDist) to transfer l-MLLM's ability to model correlations between visual features. Additionally, we propose a three-stage training scheme to fully exploit the potential of s-MLLM: 1) Distilled Pre-Training to align visual-textual representations, 2) Supervised Fine-Tuning to equip the model with multimodal understanding, and 3) Distilled Fine-Tuning to further transfer l-MLLM capabilities. Our approach significantly improves performance without altering the small model's architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/caiyuxuan1120/LLaVA-KD.
Abstract:Significant advancements have been made in the field of video generation, with the open-source community contributing a wealth of research papers and tools for training high-quality models. However, despite these efforts, the available information and resources remain insufficient for achieving commercial-level performance. In this report, we open the black box and introduce $\textbf{Allegro}$, an advanced video generation model that excels in both quality and temporal consistency. We also highlight the current limitations in the field and present a comprehensive methodology for training high-performance, commercial-level video generation models, addressing key aspects such as data, model architecture, training pipeline, and evaluation. Our user study shows that Allegro surpasses existing open-source models and most commercial models, ranking just behind Hailuo and Kling. Code: https://github.com/rhymes-ai/Allegro , Model: https://huggingface.co/rhymes-ai/Allegro , Gallery: https://rhymes.ai/allegro_gallery .
Abstract:Reconstruction-based methods have significantly advanced modern unsupervised anomaly detection. However, the strong capacity of neural networks often violates the underlying assumptions by reconstructing abnormal samples well. To alleviate this issue, we present a simple yet effective reconstruction framework named Attention-Guided Pertuation Network (AGPNet), which learns to add perturbation noise with an attention mask, for accurate unsupervised anomaly detection. Specifically, it consists of two branches, \ie, a plain reconstruction branch and an auxiliary attention-based perturbation branch. The reconstruction branch is simply a plain reconstruction network that learns to reconstruct normal samples, while the auxiliary branch aims to produce attention masks to guide the noise perturbation process for normal samples from easy to hard. By doing so, we are expecting to synthesize hard yet more informative anomalies for training, which enable the reconstruction branch to learn important inherent normal patterns both comprehensively and efficiently. Extensive experiments are conducted on three popular benchmarks covering MVTec-AD, VisA, and MVTec-3D, and show that our framework obtains leading anomaly detection performance under various setups including few-shot, one-class, and multi-class setups.
Abstract:Visual anomaly detection aims to identify anomalous regions in images through unsupervised learning paradigms, with increasing application demand and value in fields such as industrial inspection and medical lesion detection. Despite significant progress in recent years, there is a lack of comprehensive benchmarks to adequately evaluate the performance of various mainstream methods across different datasets under the practical multi-class setting. The absence of standardized experimental setups can lead to potential biases in training epochs, resolution, and metric results, resulting in erroneous conclusions. This paper addresses this issue by proposing a comprehensive visual anomaly detection benchmark, \textbf{\textit{ADer}}, which is a modular framework that is highly extensible for new methods. The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics. Additionally, we have open-sourced the GPU-assisted \href{https://pypi.org/project/ADEval}{ADEval} package to address the slow evaluation problem of metrics like time-consuming mAU-PRO on large-scale data, significantly reducing evaluation time by more than \textit{1000-fold}. Through extensive experimental results, we objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection. We hope that \textbf{\textit{ADer}} will become a valuable resource for researchers and practitioners in the field, promoting the development of more robust and generalizable anomaly detection systems. Full codes have been attached in Appendix and open-sourced at \url{https://github.com/zhangzjn/ader}.
Abstract:Multi-timestep simulation of brain-inspired Spiking Neural Networks (SNNs) boost memory requirements during training and increase inference energy cost. Current training methods cannot simultaneously solve both training and inference dilemmas. This work proposes a novel Temporal Reversible architecture for SNNs (T-RevSNN) to jointly address the training and inference challenges by altering the forward propagation of SNNs. We turn off the temporal dynamics of most spiking neurons and design multi-level temporal reversible interactions at temporal turn-on spiking neurons, resulting in a $O(L)$ training memory. Combined with the temporal reversible nature, we redesign the input encoding and network organization of SNNs to achieve $O(1)$ inference energy cost. Then, we finely adjust the internal units and residual connections of the basic SNN block to ensure the effectiveness of sparse temporal information interaction. T-RevSNN achieves excellent accuracy on ImageNet, while the memory efficiency, training time acceleration, and inference energy efficiency can be significantly improved by $8.6 \times$, $2.0 \times$, and $1.6 \times$, respectively. This work is expected to break the technical bottleneck of significantly increasing memory cost and training time for large-scale SNNs while maintaining high performance and low inference energy cost. Source code and models are available at: https://github.com/BICLab/T-RevSNN.
Abstract:Recently, large vision and language models have shown their success when adapting them to many downstream tasks. In this paper, we present a unified framework named CLIP-ADA for Anomaly Detection by Adapting a pre-trained CLIP model. To this end, we make two important improvements: 1) To acquire unified anomaly detection across industrial images of multiple categories, we introduce the learnable prompt and propose to associate it with abnormal patterns through self-supervised learning. 2) To fully exploit the representation power of CLIP, we introduce an anomaly region refinement strategy to refine the localization quality. During testing, the anomalies are localized by directly calculating the similarity between the representation of the learnable prompt and the image. Comprehensive experiments demonstrate the superiority of our framework, e.g., we achieve the state-of-the-art 97.5/55.6 and 89.3/33.1 on MVTec-AD and VisA for anomaly detection and localization. In addition, the proposed method also achieves encouraging performance with marginal training data, which is more challenging.
Abstract:We introduce the Yi model family, a series of language and multimodal models that demonstrate strong multi-dimensional capabilities. The Yi model family is based on 6B and 34B pretrained language models, then we extend them to chat models, 200K long context models, depth-upscaled models, and vision-language models. Our base models achieve strong performance on a wide range of benchmarks like MMLU, and our finetuned chat models deliver strong human preference rate on major evaluation platforms like AlpacaEval and Chatbot Arena. Building upon our scalable super-computing infrastructure and the classical transformer architecture, we attribute the performance of Yi models primarily to its data quality resulting from our data-engineering efforts. For pretraining, we construct 3.1 trillion tokens of English and Chinese corpora using a cascaded data deduplication and quality filtering pipeline. For finetuning, we polish a small scale (less than 10K) instruction dataset over multiple iterations such that every single instance has been verified directly by our machine learning engineers. For vision-language, we combine the chat language model with a vision transformer encoder and train the model to align visual representations to the semantic space of the language model. We further extend the context length to 200K through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. We show that extending the depth of the pretrained checkpoint through continual pretraining further improves performance. We believe that given our current results, continuing to scale up model parameters using thoroughly optimized data will lead to even stronger frontier models.
Abstract:Defect detection is a critical research area in artificial intelligence. Recently, synthetic data-based self-supervised learning has shown great potential on this task. Although many sophisticated synthesizing strategies exist, little research has been done to investigate the robustness of models when faced with different strategies. In this paper, we focus on this issue and find that existing methods are highly sensitive to them. To alleviate this issue, we present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies across different anomaly detection benchmarks. We hypothesize that the high sensitivity to synthetic data of existing self-supervised methods arises from their heavy reliance on the visual appearance of synthetic data during decoding. In contrast, our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance. To this end, inspired by existing knowledge distillation methods, we employ a teacher-student network, which is trained based on synthesized outliers, to compute the discrepancy map as the cue. Extensive experiments on two challenging datasets prove the robustness of our method. Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance. Code is available at: https://github.com/caiyuxuan1120/DAF.
Abstract:Masked image modeling (MIM) has become a prevalent pre-training setup for vision foundation models and attains promising performance. Despite its success, existing MIM methods discard the decoder network during downstream applications, resulting in inconsistent representations between pre-training and fine-tuning and can hamper downstream task performance. In this paper, we propose a new architecture, RevColV2, which tackles this issue by keeping the entire autoencoder architecture during both pre-training and fine-tuning. The main body of RevColV2 contains bottom-up columns and top-down columns, between which information is reversibly propagated and gradually disentangled. Such design enables our architecture with the nice property: maintaining disentangled low-level and semantic information at the end of the network in MIM pre-training. Our experimental results suggest that a foundation model with decoupled features can achieve competitive performance across multiple downstream vision tasks such as image classification, semantic segmentation and object detection. For example, after intermediate fine-tuning on ImageNet-22K dataset, RevColV2-L attains 88.4% top-1 accuracy on ImageNet-1K classification and 58.6 mIoU on ADE20K semantic segmentation. With extra teacher and large scale dataset, RevColv2-L achieves 62.1 box AP on COCO detection and 60.4 mIoU on ADE20K semantic segmentation. Code and models are released at https://github.com/megvii-research/RevCol
Abstract:We propose a new neural network design paradigm Reversible Column Network (RevCol). The main body of RevCol is composed of multiple copies of subnetworks, named columns respectively, between which multi-level reversible connections are employed. Such architectural scheme attributes RevCol very different behavior from conventional networks: during forward propagation, features in RevCol are learned to be gradually disentangled when passing through each column, whose total information is maintained rather than compressed or discarded as other network does. Our experiments suggest that CNN-style RevCol models can achieve very competitive performances on multiple computer vision tasks such as image classification, object detection and semantic segmentation, especially with large parameter budget and large dataset. For example, after ImageNet-22K pre-training, RevCol-XL obtains 88.2% ImageNet-1K accuracy. Given more pre-training data, our largest model RevCol-H reaches 90.0% on ImageNet-1K, 63.8% APbox on COCO detection minival set, 61.0% mIoU on ADE20k segmentation. To our knowledge, it is the best COCO detection and ADE20k segmentation result among pure (static) CNN models. Moreover, as a general macro architecture fashion, RevCol can also be introduced into transformers or other neural networks, which is demonstrated to improve the performances in both computer vision and NLP tasks. We release code and models at https://github.com/megvii-research/RevCol