College of Control Science and Engineering, Zhejiang University, Hangzhou, China
Abstract:The rapid expansion of research across machine learning, vision, and language has produced a volume of publications that is increasingly difficult to synthesize. Traditional bibliometric tools rely mainly on metadata and offer limited visibility into the semantic content of papers, making it hard to track how research themes evolve over time or how different areas influence one another. To obtain a clearer picture of recent developments, we compile a unified corpus of more than 100,000 papers from 22 major conferences between 2020 and 2025 and construct a multidimensional profiling pipeline to organize and analyze their textual content. By combining topic clustering, LLM-assisted parsing, and structured retrieval, we derive a comprehensive representation of research activity that supports the study of topic lifecycles, methodological transitions, dataset and model usage patterns, and institutional research directions. Our analysis highlights several notable shifts, including the growth of safety, multimodal reasoning, and agent-oriented studies, as well as the gradual stabilization of areas such as neural machine translation and graph-based methods. These findings provide an evidence-based view of how AI research is evolving and offer a resource for understanding broader trends and identifying emerging directions. Code and dataset: https://github.com/xzc-zju/Profiling_Scientific_Literature
Abstract:Chain-of-Thought (CoT) reasoning has proven effective in enhancing large language models by encouraging step-by-step intermediate reasoning, and recent advances have extended this paradigm to Multimodal Large Language Models (MLLMs). In the medical domain, where diagnostic decisions depend on nuanced visual cues and sequential reasoning, CoT aligns naturally with clinical thinking processes. However, Current benchmarks for medical image understanding generally focus on the final answer while ignoring the reasoning path. An opaque process lacks reliable bases for judgment, making it difficult to assist doctors in diagnosis. To address this gap, we introduce a new M3CoTBench benchmark specifically designed to evaluate the correctness, efficiency, impact, and consistency of CoT reasoning in medical image understanding. M3CoTBench features 1) a diverse, multi-level difficulty dataset covering 24 examination types, 2) 13 varying-difficulty tasks, 3) a suite of CoT-specific evaluation metrics (correctness, efficiency, impact, and consistency) tailored to clinical reasoning, and 4) a performance analysis of multiple MLLMs. M3CoTBench systematically evaluates CoT reasoning across diverse medical imaging tasks, revealing current limitations of MLLMs in generating reliable and clinically interpretable reasoning, and aims to foster the development of transparent, trustworthy, and diagnostically accurate AI systems for healthcare. Project page at https://juntaojianggavin.github.io/projects/M3CoTBench/.
Abstract:Retrieval-Augmented Generation (RAG) has emerged as an important means of enhancing the performance of large language models (LLMs) in knowledge-intensive tasks. However, most existing RAG strategies treat retrieved passages in a flat and unstructured way, which prevents the model from capturing structural cues and constrains its ability to synthesize knowledge from dispersed evidence across documents. To overcome these limitations, we propose Disco-RAG, a discourse-aware framework that explicitly injects discourse signals into the generation process. Our method constructs intra-chunk discourse trees to capture local hierarchies and builds inter-chunk rhetorical graphs to model cross-passage coherence. These structures are jointly integrated into a planning blueprint that conditions the generation. Experiments on question answering and long-document summarization benchmarks show the efficacy of our approach. Disco-RAG achieves state-of-the-art results on the benchmarks without fine-tuning. These findings underscore the important role of discourse structure in advancing RAG systems.
Abstract:Skin lesion segmentation is a crucial step in dermatology for guiding clinical decision-making. However, existing methods for accurate, robust, and resource-efficient lesion analysis have limitations, including low performance and high computational complexity. To address these limitations, we propose UltraLBM-UNet, a lightweight U-Net variant that integrates a bidirectional Mamba-based global modeling mechanism with multi-branch local feature perception. The proposed architecture integrates efficient local feature injection with bidirectional state-space modeling, enabling richer contextual interaction across spatial dimensions while maintaining computational compactness suitable for point-of-care deployment. Extensive experiments on the ISIC 2017, ISIC 2018, and PH2 datasets demonstrate that our model consistently achieves state-of-the-art segmentation accuracy, outperforming existing lightweight and Mamba counterparts with only 0.034M parameters and 0.060 GFLOPs. In addition, we introduce a hybrid knowledge distillation strategy to train an ultra-compact student model, where the distilled variant UltraLBM-UNet-T, with only 0.011M parameters and 0.019 GFLOPs, achieves competitive segmentation performance. These results highlight the suitability of UltraLBM-UNet for point-of-care deployment, where accurate and robust lesion analyses are essential. The source code is publicly available at https://github.com/LinLinLin-X/UltraLBM-UNet.
Abstract:The quality and diversity of instruction-based image editing datasets are continuously increasing, yet large-scale, high-quality datasets for instruction-based video editing remain scarce. To address this gap, we introduce OpenVE-3M, an open-source, large-scale, and high-quality dataset for instruction-based video editing. It comprises two primary categories: spatially-aligned edits (Global Style, Background Change, Local Change, Local Remove, Local Add, and Subtitles Edit) and non-spatially-aligned edits (Camera Multi-Shot Edit and Creative Edit). All edit types are generated via a meticulously designed data pipeline with rigorous quality filtering. OpenVE-3M surpasses existing open-source datasets in terms of scale, diversity of edit types, instruction length, and overall quality. Furthermore, to address the lack of a unified benchmark in the field, we construct OpenVE-Bench, containing 431 video-edit pairs that cover a diverse range of editing tasks with three key metrics highly aligned with human judgment. We present OpenVE-Edit, a 5B model trained on our dataset that demonstrates remarkable efficiency and effectiveness by setting a new state-of-the-art on OpenVE-Bench, outperforming all prior open-source models including a 14B baseline. Project page is at https://lewandofskee.github.io/projects/OpenVE.
Abstract:Native 4K (2160$\times$3840) video generation remains a critical challenge due to the quadratic computational explosion of full-attention as spatiotemporal resolution increases, making it difficult for models to strike a balance between efficiency and quality. This paper proposes a novel Transformer retrofit strategy termed $\textbf{T3}$ ($\textbf{T}$ransform $\textbf{T}$rained $\textbf{T}$ransformer) that, without altering the core architecture of full-attention pretrained models, significantly reduces compute requirements by optimizing their forward logic. Specifically, $\textbf{T3-Video}$ introduces a multi-scale weight-sharing window attention mechanism and, via hierarchical blocking together with an axis-preserving full-attention design, can effect an "attention pattern" transformation of a pretrained model using only modest compute and data. Results on 4K-VBench show that $\textbf{T3-Video}$ substantially outperforms existing approaches: while delivering performance improvements (+4.29$\uparrow$ VQA and +0.08$\uparrow$ VTC), it accelerates native 4K video generation by more than 10$\times$. Project page at https://zhangzjn.github.io/projects/T3-Video
Abstract:The quality of the video dataset (image quality, resolution, and fine-grained caption) greatly influences the performance of the video generation model. The growing demand for video applications sets higher requirements for high-quality video generation models. For example, the generation of movie-level Ultra-High Definition (UHD) videos and the creation of 4K short video content. However, the existing public datasets cannot support related research and applications. In this paper, we first propose a high-quality open-sourced UHD-4K (22.4\% of which are 8K) text-to-video dataset named UltraVideo, which contains a wide range of topics (more than 100 kinds), and each video has 9 structured captions with one summarized caption (average of 824 words). Specifically, we carefully design a highly automated curation process with four stages to obtain the final high-quality dataset: \textit{i)} collection of diverse and high-quality video clips. \textit{ii)} statistical data filtering. \textit{iii)} model-based data purification. \textit{iv)} generation of comprehensive, structured captions. In addition, we expand Wan to UltraWan-1K/-4K, which can natively generate high-quality 1K/4K videos with more consistent text controllability, demonstrating the effectiveness of our data curation.We believe that this work can make a significant contribution to future research on UHD video generation. UltraVideo dataset and UltraWan models are available at https://xzc-zju.github.io/projects/UltraVideo.
Abstract:Multimodal Large Language Models (MLLMs) struggle with long videos due to fixed context windows and weak long-term dependency modeling. Existing Retrieval-Augmented Generation (RAG) methods for videos use static retrieval strategies, leading to inefficiencies for simple queries and information loss for complex tasks. To address this, we propose AdaVideoRAG, a novel framework that dynamically adapts retrieval granularity based on query complexity using a lightweight intent classifier. Our framework employs an Omni-Knowledge Indexing module to build hierarchical databases from text (captions, ASR, OCR), visual features, and semantic graphs, enabling optimal resource allocation across tasks. We also introduce the HiVU benchmark for comprehensive evaluation. Experiments demonstrate improved efficiency and accuracy for long-video understanding, with seamless integration into existing MLLMs. AdaVideoRAG establishes a new paradigm for adaptive retrieval in video analysis. Codes will be open-sourced at https://github.com/xzc-zju/AdaVideoRAG.
Abstract:Image inversion is a fundamental task in generative models, aiming to map images back to their latent representations to enable downstream applications such as editing, restoration, and style transfer. This paper provides a comprehensive review of the latest advancements in image inversion techniques, focusing on two main paradigms: Generative Adversarial Network (GAN) inversion and diffusion model inversion. We categorize these techniques based on their optimization methods. For GAN inversion, we systematically classify existing methods into encoder-based approaches, latent optimization approaches, and hybrid approaches, analyzing their theoretical foundations, technical innovations, and practical trade-offs. For diffusion model inversion, we explore training-free strategies, fine-tuning methods, and the design of additional trainable modules, highlighting their unique advantages and limitations. Additionally, we discuss several popular downstream applications and emerging applications beyond image tasks, identifying current challenges and future research directions. By synthesizing the latest developments, this paper aims to provide researchers and practitioners with a valuable reference resource, promoting further advancements in the field of image inversion. We keep track of the latest works at https://github.com/RyanChenYN/ImageInversion




Abstract:Employing LLMs for visual generation has recently become a research focus. However, the existing methods primarily transfer the LLM architecture to visual generation but rarely investigate the fundamental differences between language and vision. This oversight may lead to suboptimal utilization of visual generation capabilities within the LLM framework. In this paper, we explore the characteristics of visual embedding space under the LLM framework and discover that the correlation between visual embeddings can help achieve more stable and robust generation results. We present IAR, an Improved AutoRegressive Visual Generation Method that enhances the training efficiency and generation quality of LLM-based visual generation models. Firstly, we propose a Codebook Rearrangement strategy that uses balanced k-means clustering algorithm to rearrange the visual codebook into clusters, ensuring high similarity among visual features within each cluster. Leveraging the rearranged codebook, we propose a Cluster-oriented Cross-entropy Loss that guides the model to correctly predict the cluster where the token is located. This approach ensures that even if the model predicts the wrong token index, there is a high probability the predicted token is located in the correct cluster, which significantly enhances the generation quality and robustness. Extensive experiments demonstrate that our method consistently enhances the model training efficiency and performance from 100M to 1.4B, reducing the training time by half while achieving the same FID. Additionally, our approach can be applied to various LLM-based visual generation models and adheres to the scaling law, providing a promising direction for future research in LLM-based visual generation.