Abstract:Employing LLMs for visual generation has recently become a research focus. However, the existing methods primarily transfer the LLM architecture to visual generation but rarely investigate the fundamental differences between language and vision. This oversight may lead to suboptimal utilization of visual generation capabilities within the LLM framework. In this paper, we explore the characteristics of visual embedding space under the LLM framework and discover that the correlation between visual embeddings can help achieve more stable and robust generation results. We present IAR, an Improved AutoRegressive Visual Generation Method that enhances the training efficiency and generation quality of LLM-based visual generation models. Firstly, we propose a Codebook Rearrangement strategy that uses balanced k-means clustering algorithm to rearrange the visual codebook into clusters, ensuring high similarity among visual features within each cluster. Leveraging the rearranged codebook, we propose a Cluster-oriented Cross-entropy Loss that guides the model to correctly predict the cluster where the token is located. This approach ensures that even if the model predicts the wrong token index, there is a high probability the predicted token is located in the correct cluster, which significantly enhances the generation quality and robustness. Extensive experiments demonstrate that our method consistently enhances the model training efficiency and performance from 100M to 1.4B, reducing the training time by half while achieving the same FID. Additionally, our approach can be applied to various LLM-based visual generation models and adheres to the scaling law, providing a promising direction for future research in LLM-based visual generation.
Abstract:The emergence of diffusion models has greatly propelled the progress in image and video generation. Recently, some efforts have been made in controllable video generation, including text-to-video generation and video motion control, among which camera motion control is an important topic. However, existing camera motion control methods rely on training a temporal camera module, and necessitate substantial computation resources due to the large amount of parameters in video generation models. Moreover, existing methods pre-define camera motion types during training, which limits their flexibility in camera control. Therefore, to reduce training costs and achieve flexible camera control, we propose COMD, a novel training-free video motion transfer model, which disentangles camera motions and object motions in source videos and transfers the extracted camera motions to new videos. We first propose a one-shot camera motion disentanglement method to extract camera motion from a single source video, which separates the moving objects from the background and estimates the camera motion in the moving objects region based on the motion in the background by solving a Poisson equation. Furthermore, we propose a few-shot camera motion disentanglement method to extract the common camera motion from multiple videos with similar camera motions, which employs a window-based clustering technique to extract the common features in temporal attention maps of multiple videos. Finally, we propose a motion combination method to combine different types of camera motions together, enabling our model a more controllable and flexible camera control. Extensive experiments demonstrate that our training-free approach can effectively decouple camera-object motion and apply the decoupled camera motion to a wide range of controllable video generation tasks, achieving flexible and diverse camera motion control.