Abstract:The success of Large Language Models (LLM) has led researchers to explore Multimodal Large Language Models (MLLM) for unified visual and linguistic understanding. However, the increasing model size and computational complexity of MLLM limit their use in resource-constrained environments. Small-scale MLLM (s-MLLM) aims to retain the capabilities of the large-scale model (l-MLLM) while reducing computational demands, but resulting in a significant decline in performance. To address the aforementioned issues, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLM to s-MLLM. Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM, and Relation Distillation (RDist) to transfer l-MLLM's ability to model correlations between visual features. Additionally, we propose a three-stage training scheme to fully exploit the potential of s-MLLM: 1) Distilled Pre-Training to align visual-textual representations, 2) Supervised Fine-Tuning to equip the model with multimodal understanding, and 3) Distilled Fine-Tuning to further transfer l-MLLM capabilities. Our approach significantly improves performance without altering the small model's architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/caiyuxuan1120/LLaVA-KD.
Abstract:This study explores the recently proposed challenging multi-view Anomaly Detection (AD) task. Single-view tasks would encounter blind spots from other perspectives, resulting in inaccuracies in sample-level prediction. Therefore, we introduce the \textbf{M}ulti-\textbf{V}iew \textbf{A}nomaly \textbf{D}etection (\textbf{MVAD}) framework, which learns and integrates features from multi-views. Specifically, we proposed a \textbf{M}ulti-\textbf{V}iew \textbf{A}daptive \textbf{S}election (\textbf{MVAS}) algorithm for feature learning and fusion across multiple views. The feature maps are divided into neighbourhood attention windows to calculate a semantic correlation matrix between single-view windows and all other views, which is a conducted attention mechanism for each single-view window and the top-K most correlated multi-view windows. Adjusting the window sizes and top-K can minimise the computational complexity to linear. Extensive experiments on the Real-IAD dataset for cross-setting (multi/single-class) validate the effectiveness of our approach, achieving state-of-the-art performance among sample \textbf{4.1\%}$\uparrow$/ image \textbf{5.6\%}$\uparrow$/pixel \textbf{6.7\%}$\uparrow$ levels with a total of ten metrics with only \textbf{18M} parameters and fewer GPU memory and training time.
Abstract:Visual anomaly detection aims to identify anomalous regions in images through unsupervised learning paradigms, with increasing application demand and value in fields such as industrial inspection and medical lesion detection. Despite significant progress in recent years, there is a lack of comprehensive benchmarks to adequately evaluate the performance of various mainstream methods across different datasets under the practical multi-class setting. The absence of standardized experimental setups can lead to potential biases in training epochs, resolution, and metric results, resulting in erroneous conclusions. This paper addresses this issue by proposing a comprehensive visual anomaly detection benchmark, \textbf{\textit{ADer}}, which is a modular framework that is highly extensible for new methods. The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics. Additionally, we have open-sourced the GPU-assisted \href{https://pypi.org/project/ADEval}{ADEval} package to address the slow evaluation problem of metrics like time-consuming mAU-PRO on large-scale data, significantly reducing evaluation time by more than \textit{1000-fold}. Through extensive experimental results, we objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection. We hope that \textbf{\textit{ADer}} will become a valuable resource for researchers and practitioners in the field, promoting the development of more robust and generalizable anomaly detection systems. Full codes have been attached in Appendix and open-sourced at \url{https://github.com/zhangzjn/ader}.
Abstract:Transformers have revolutionized the point cloud learning task, but the quadratic complexity hinders its extension to long sequence and makes a burden on limited computational resources. The recent advent of RWKV, a fresh breed of deep sequence models, has shown immense potential for sequence modeling in NLP tasks. In this paper, we present PointRWKV, a model of linear complexity derived from the RWKV model in the NLP field with necessary modifications for point cloud learning tasks. Specifically, taking the embedded point patches as input, we first propose to explore the global processing capabilities within PointRWKV blocks using modified multi-headed matrix-valued states and a dynamic attention recurrence mechanism. To extract local geometric features simultaneously, we design a parallel branch to encode the point cloud efficiently in a fixed radius near-neighbors graph with a graph stabilizer. Furthermore, we design PointRWKV as a multi-scale framework for hierarchical feature learning of 3D point clouds, facilitating various downstream tasks. Extensive experiments on different point cloud learning tasks show our proposed PointRWKV outperforms the transformer- and mamba-based counterparts, while significantly saving about 46\% FLOPs, demonstrating the potential option for constructing foundational 3D models.
Abstract:Recent advancements in anomaly detection have seen the efficacy of CNN- and transformer-based approaches. However, CNNs struggle with long-range dependencies, while transformers are burdened by quadratic computational complexity. Mamba-based models, with their superior long-range modeling and linear efficiency, have garnered substantial attention. This study pioneers the application of Mamba to multi-class unsupervised anomaly detection, presenting MambaAD, which consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales. The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi-kernel convolutions operations, effectively captures both long-range and local information. The HSS block, utilizing (Hybrid Scanning) HS encoders, encodes feature maps into five scanning methods and eight directions, thereby strengthening global connections through the (State Space Model) SSM. The use of Hilbert scanning and eight directions significantly improves feature sequence modeling. Comprehensive experiments on six diverse anomaly detection datasets and seven metrics demonstrate state-of-the-art performance, substantiating the method's effectiveness.
Abstract:Reconstruction-based approaches have achieved remarkable outcomes in anomaly detection. The exceptional image reconstruction capabilities of recently popular diffusion models have sparked research efforts to utilize them for enhanced reconstruction of anomalous images. Nonetheless, these methods might face challenges related to the preservation of image categories and pixel-wise structural integrity in the more practical multi-class setting. To solve the above problems, we propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection, which consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor. Firstly, The SG network is proposed for reconstructing anomalous regions while preserving the original image's semantic information. Secondly, we introduce Spatial-aware Feature Fusion (SFF) block to maximize reconstruction accuracy when dealing with extensively reconstructed areas. Thirdly, the input and reconstructed images are processed by a pre-trained feature extractor to generate anomaly maps based on features extracted at different scales. Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach which surpasses the state-of-the-art methods, e.g., achieving 96.8/52.6 and 97.2/99.0 (AUROC/AP) for localization and detection respectively on multi-class MVTec-AD dataset. Code will be available at https://lewandofskee.github.io/projects/diad.
Abstract:This paper considers zero-shot Anomaly Detection (AD), a valuable yet under-studied task, which performs AD without any reference images of the test objects. Specifically, we employ a language-guided strategy and propose a simple-yet-effective architecture CLIP-AD, leveraging the superior zero-shot classification capabilities of the large vision-language model CLIP. A natural idea for anomaly segmentation is to directly calculate the similarity between text/image features, but we observe opposite predictions and irrelevant highlights in the results. Inspired by the phenomena, we introduce a Staged Dual-Path model (SDP) that effectively uses features from various levels and applies architecture and feature surgery to address these issues. Furthermore, delving beyond surface phenomena, we identify the problem arising from misalignment of text/image features in the joint embedding space. Thus, we introduce a fine-tuning strategy by adding linear layers and construct an extended model SDP+, further enhancing the performance. Abundant experiments demonstrate the effectiveness of our approach, e.g., on VisA, SDP outperforms SOTA by +1.0/+1.2 in classification/segmentation F1 scores, while SDP+ achieves +1.9/+11.7 improvements.
Abstract:Model-based approaches are becoming increasingly popular in the field of offline reinforcement learning, with high potential in real-world applications due to the model's capability of thoroughly utilizing the large historical datasets available with supervised learning techniques. This paper presents a literature review of recent work in offline model-based reinforcement learning, a field that utilizes model-based approaches in offline reinforcement learning. The survey provides a brief overview of the concepts and recent developments in both offline reinforcement learning and model-based reinforcement learning, and discuss the intersection of the two fields. We then presents key relevant papers in the field of offline model-based reinforcement learning and discuss their methods, particularly their approaches in solving the issue of distributional shift, the main problem faced by all current offline model-based reinforcement learning methods. We further discuss key challenges faced by the field, and suggest possible directions for future work.
Abstract:Generating new fonts is a time-consuming and labor-intensive task, especially in a language with a huge amount of characters like Chinese. Various deep learning models have demonstrated the ability to efficiently generate new fonts with a few reference characters of that style, but few models support cross-lingual font generation. This paper presents GAS-NeXt, a novel few-shot cross-lingual font generator based on AGIS-Net and Font Translator GAN, and improve the performance metrics such as Fr\'echet Inception Distance (FID), Structural Similarity Index Measure(SSIM), and Pixel-level Accuracy (pix-acc). Our approaches include replacing the original encoder and decoder with the idea of layer attention and context-aware attention from Font Translator GAN, while utilizing the shape, texture, and local discriminators of AGIS-Net. In our experiment on English-to-Chinese font translation, we observed better results in fonts with distinct local features than conventional Chinese fonts compared to results obtained from Font Translator GAN. We also validate our method on multiple languages and datasets.
Abstract:In this paper, a self-calibration approach for eye-in-hand robots using SLAM is considered. The goal is to calibrate the positioning of a robotic arm, with a camera mounted on the end-effector automatically using a SLAM-based method like Extended Kalman Filter (EKF). Given the camera intrinsic parameters and a set of feature markers in a work-space, the camera extrinsic parameters are approximated. An EKF based measurement model is deployed to effectively localize the camera and compute the camera to end-effector transformation. The proposed approach is tested on a UR5 manipulator with a depth-camera mounted on the end-effector to validate our results.