Abstract:This study explores the recently proposed challenging multi-view Anomaly Detection (AD) task. Single-view tasks would encounter blind spots from other perspectives, resulting in inaccuracies in sample-level prediction. Therefore, we introduce the \textbf{M}ulti-\textbf{V}iew \textbf{A}nomaly \textbf{D}etection (\textbf{MVAD}) framework, which learns and integrates features from multi-views. Specifically, we proposed a \textbf{M}ulti-\textbf{V}iew \textbf{A}daptive \textbf{S}election (\textbf{MVAS}) algorithm for feature learning and fusion across multiple views. The feature maps are divided into neighbourhood attention windows to calculate a semantic correlation matrix between single-view windows and all other views, which is a conducted attention mechanism for each single-view window and the top-K most correlated multi-view windows. Adjusting the window sizes and top-K can minimise the computational complexity to linear. Extensive experiments on the Real-IAD dataset for cross-setting (multi/single-class) validate the effectiveness of our approach, achieving state-of-the-art performance among sample \textbf{4.1\%}$\uparrow$/ image \textbf{5.6\%}$\uparrow$/pixel \textbf{6.7\%}$\uparrow$ levels with a total of ten metrics with only \textbf{18M} parameters and fewer GPU memory and training time.
Abstract:Anomaly detection (AD) is often focused on detecting anomaly areas for industrial quality inspection and medical lesion examination. However, due to the specific scenario targets, the data scale for AD is relatively small, and evaluation metrics are still deficient compared to classic vision tasks, such as object detection and semantic segmentation. To fill these gaps, this work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field. This enables fair evaluation and sustainable development for different methods on this challenging benchmark. Moreover, current metrics such as AU-ROC have nearly reached saturation on simple datasets, which prevents a comprehensive evaluation of different methods. Inspired by the metrics in the segmentation field, we further propose several more practical threshold-dependent AD-specific metrics, ie, m$F_1$$^{.2}_{.8}$, mAcc$^{.2}_{.8}$, mIoU$^{.2}_{.8}$, and mIoU-max. Motivated by GAN inversion's high-quality reconstruction capability, we propose a simple but more powerful InvAD framework to achieve high-quality feature reconstruction. Our method improves the effectiveness of reconstruction-based methods on popular MVTec AD, VisA, and our newly proposed COCO-AD datasets under a multi-class unsupervised setting, where only a single detection model is trained to detect anomalies from different classes. Extensive ablation experiments have demonstrated the effectiveness of each component of our InvAD. Full codes and models are available at https://github.com/zhangzjn/ader.
Abstract:Recent advancements in anomaly detection have seen the efficacy of CNN- and transformer-based approaches. However, CNNs struggle with long-range dependencies, while transformers are burdened by quadratic computational complexity. Mamba-based models, with their superior long-range modeling and linear efficiency, have garnered substantial attention. This study pioneers the application of Mamba to multi-class unsupervised anomaly detection, presenting MambaAD, which consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales. The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi-kernel convolutions operations, effectively captures both long-range and local information. The HSS block, utilizing (Hybrid Scanning) HS encoders, encodes feature maps into five scanning methods and eight directions, thereby strengthening global connections through the (State Space Model) SSM. The use of Hilbert scanning and eight directions significantly improves feature sequence modeling. Comprehensive experiments on six diverse anomaly detection datasets and seven metrics demonstrate state-of-the-art performance, substantiating the method's effectiveness.
Abstract:Few-shot anomaly detection (FSAD) is essential in industrial manufacturing. However, existing FSAD methods struggle to effectively leverage a limited number of normal samples, and they may fail to detect and locate inconspicuous anomalies in the spatial domain. We further discover that these subtle anomalies would be more noticeable in the frequency domain. In this paper, we propose a Dual-Path Frequency Discriminators (DFD) network from a frequency perspective to tackle these issues. Specifically, we generate anomalies at both image-level and feature-level. Differential frequency components are extracted by the multi-frequency information construction module and supplied into the fine-grained feature construction module to provide adapted features. We consider anomaly detection as a discriminative classification problem, wherefore the dual-path feature discrimination module is employed to detect and locate the image-level and feature-level anomalies in the feature space. The discriminators aim to learn a joint representation of anomalous features and normal features in the latent space. Extensive experiments conducted on MVTec AD and VisA benchmarks demonstrate that our DFD surpasses current state-of-the-art methods. Source code will be available.
Abstract:This paper considers zero-shot Anomaly Detection (AD), a valuable yet under-studied task, which performs AD without any reference images of the test objects. Specifically, we employ a language-guided strategy and propose a simple-yet-effective architecture CLIP-AD, leveraging the superior zero-shot classification capabilities of the large vision-language model CLIP. A natural idea for anomaly segmentation is to directly calculate the similarity between text/image features, but we observe opposite predictions and irrelevant highlights in the results. Inspired by the phenomena, we introduce a Staged Dual-Path model (SDP) that effectively uses features from various levels and applies architecture and feature surgery to address these issues. Furthermore, delving beyond surface phenomena, we identify the problem arising from misalignment of text/image features in the joint embedding space. Thus, we introduce a fine-tuning strategy by adding linear layers and construct an extended model SDP+, further enhancing the performance. Abundant experiments demonstrate the effectiveness of our approach, e.g., on VisA, SDP outperforms SOTA by +1.0/+1.2 in classification/segmentation F1 scores, while SDP+ achieves +1.9/+11.7 improvements.
Abstract:Neural network quantization is a very promising solution in the field of model compression, but its resulting accuracy highly depends on a training/fine-tuning process and requires the original data. This not only brings heavy computation and time costs but also is not conducive to privacy and sensitive information protection. Therefore, a few recent works are starting to focus on data-free quantization. However, data-free quantization does not perform well while dealing with ultra-low precision quantization. Although researchers utilize generative methods of synthetic data to address this problem partially, data synthesis needs to take a lot of computation and time. In this paper, we propose a data-free mixed-precision compensation (DF-MPC) method to recover the performance of an ultra-low precision quantized model without any data and fine-tuning process. By assuming the quantized error caused by a low-precision quantized layer can be restored via the reconstruction of a high-precision quantized layer, we mathematically formulate the reconstruction loss between the pre-trained full-precision model and its layer-wise mixed-precision quantized model. Based on our formulation, we theoretically deduce the closed-form solution by minimizing the reconstruction loss of the feature maps. Since DF-MPC does not require any original/synthetic data, it is a more efficient method to approximate the full-precision model. Experimentally, our DF-MPC is able to achieve higher accuracy for an ultra-low precision quantized model compared to the recent methods without any data and fine-tuning process.
Abstract:Deep neural networks have been widely used in medical image analysis and medical image segmentation is one of the most important tasks. U-shaped neural networks with encoder-decoder are prevailing and have succeeded greatly in various segmentation tasks. While CNNs treat an image as a grid of pixels in Euclidean space and Transformers recognize an image as a sequence of patches, graph-based representation is more generalized and can construct connections for each part of an image. In this paper, we propose a novel ViG-UNet, a graph neural network-based U-shaped architecture with the encoder, the decoder, the bottleneck, and skip connections. The downsampling and upsampling modules are also carefully designed. The experimental results on ISIC 2016, ISIC 2017 and Kvasir-SEG datasets demonstrate that our proposed architecture outperforms most existing classic and state-of-the-art U-shaped networks.
Abstract:Scale variation across object instances remains a key challenge in object detection task. Despite the remarkable progress made by modern detection models, this challenge is particularly evident in the semi-supervised case. While existing semi-supervised object detection methods rely on strict conditions to filter high-quality pseudo labels from network predictions, we observe that objects with extreme scale tend to have low confidence, resulting in a lack of positive supervision for these objects. In this paper, we propose a novel framework that addresses the scale variation problem by introducing a mixed scale teacher to improve pseudo label generation and scale-invariant learning. Additionally, we propose mining pseudo labels using score promotion of predictions across scales, which benefits from better predictions from mixed scale features. Our extensive experiments on MS COCO and PASCAL VOC benchmarks under various semi-supervised settings demonstrate that our method achieves new state-of-the-art performance. The code and models are available at \url{https://github.com/lliuz/MixTeacher}.
Abstract:We propose an end to end deep learning approach for generating real-time facial animation from just audio. Specifically, our deep architecture employs deep bidirectional long short-term memory network and attention mechanism to discover the latent representations of time-varying contextual information within the speech and recognize the significance of different information contributed to certain face status. Therefore, our model is able to drive different levels of facial movements at inference and automatically keep up with the corresponding pitch and latent speaking style in the input audio, with no assumption or further human intervention. Evaluation results show that our method could not only generate accurate lip movements from audio, but also successfully regress the speaker's time-varying facial movements.