This paper considers zero-shot Anomaly Detection (AD), a valuable yet under-studied task, which performs AD without any reference images of the test objects. Specifically, we employ a language-guided strategy and propose a simple-yet-effective architecture CLIP-AD, leveraging the superior zero-shot classification capabilities of the large vision-language model CLIP. A natural idea for anomaly segmentation is to directly calculate the similarity between text/image features, but we observe opposite predictions and irrelevant highlights in the results. Inspired by the phenomena, we introduce a Staged Dual-Path model (SDP) that effectively uses features from various levels and applies architecture and feature surgery to address these issues. Furthermore, delving beyond surface phenomena, we identify the problem arising from misalignment of text/image features in the joint embedding space. Thus, we introduce a fine-tuning strategy by adding linear layers and construct an extended model SDP+, further enhancing the performance. Abundant experiments demonstrate the effectiveness of our approach, e.g., on VisA, SDP outperforms SOTA by +1.0/+1.2 in classification/segmentation F1 scores, while SDP+ achieves +1.9/+11.7 improvements.