Abstract:The proliferation of AI-generated media poses significant challenges to information authenticity and social trust, making reliable detection methods highly demanded. Methods for detecting AI-generated media have evolved rapidly, paralleling the advancement of Multimodal Large Language Models (MLLMs). Current detection approaches can be categorized into two main groups: Non-MLLM-based and MLLM-based methods. The former employs high-precision, domain-specific detectors powered by deep learning techniques, while the latter utilizes general-purpose detectors based on MLLMs that integrate authenticity verification, explainability, and localization capabilities. Despite significant progress in this field, there remains a gap in literature regarding a comprehensive survey that examines the transition from domain-specific to general-purpose detection methods. This paper addresses this gap by providing a systematic review of both approaches, analyzing them from single-modal and multi-modal perspectives. We present a detailed comparative analysis of these categories, examining their methodological similarities and differences. Through this analysis, we explore potential hybrid approaches and identify key challenges in forgery detection, providing direction for future research. Additionally, as MLLMs become increasingly prevalent in detection tasks, ethical and security considerations have emerged as critical global concerns. We examine the regulatory landscape surrounding Generative AI (GenAI) across various jurisdictions, offering valuable insights for researchers and practitioners in this field.
Abstract:The rapid evolution of multimodal foundation models has led to significant advancements in cross-modal understanding and generation across diverse modalities, including text, images, audio, and video. However, these models remain susceptible to jailbreak attacks, which can bypass built-in safety mechanisms and induce the production of potentially harmful content. Consequently, understanding the methods of jailbreak attacks and existing defense mechanisms is essential to ensure the safe deployment of multimodal generative models in real-world scenarios, particularly in security-sensitive applications. To provide comprehensive insight into this topic, this survey reviews jailbreak and defense in multimodal generative models. First, given the generalized lifecycle of multimodal jailbreak, we systematically explore attacks and corresponding defense strategies across four levels: input, encoder, generator, and output. Based on this analysis, we present a detailed taxonomy of attack methods, defense mechanisms, and evaluation frameworks specific to multimodal generative models. Additionally, we cover a wide range of input-output configurations, including modalities such as Any-to-Text, Any-to-Vision, and Any-to-Any within generative systems. Finally, we highlight current research challenges and propose potential directions for future research.The open-source repository corresponding to this work can be found at https://github.com/liuxuannan/Awesome-Multimodal-Jailbreak.
Abstract:Flexible and accurate drag-based editing is a challenging task that has recently garnered significant attention. Current methods typically model this problem as automatically learning ``how to drag'' through point dragging and often produce one deterministic estimation, which presents two key limitations: 1) Overlooking the inherently ill-posed nature of drag-based editing, where multiple results may correspond to a given input, as illustrated in Fig.1; 2) Ignoring the constraint of image quality, which may lead to unexpected distortion. To alleviate this, we propose LucidDrag, which shifts the focus from ``how to drag'' to a paradigm of ``what-then-how''. LucidDrag comprises an intention reasoner and a collaborative guidance sampling mechanism. The former infers several optimal editing strategies, identifying what content and what semantic direction to be edited. Based on the former, the latter addresses "how to drag" by collaboratively integrating existing editing guidance with the newly proposed semantic guidance and quality guidance. Specifically, semantic guidance is derived by establishing a semantic editing direction based on reasoned intentions, while quality guidance is achieved through classifier guidance using an image fidelity discriminator. Both qualitative and quantitative comparisons demonstrate the superiority of LucidDrag over previous methods. The code will be released.