Abstract:Fires can cause severe damage to heritage buildings, making timely fire detection essential. Traditional dense cabling and drilling can harm these structures, so reducing the number of cameras to minimize such impact is challenging. Additionally, avoiding false alarms due to noise sensitivity and preserving the expertise of managers in fire-prone areas is crucial. To address these needs, we propose a fire detection method based on indirect vision, called Mirror Target YOLO (MITA-YOLO). MITA-YOLO integrates indirect vision deployment and an enhanced detection module. It uses mirror angles to achieve indirect views, solving issues with limited visibility in irregular spaces and aligning each indirect view with the target monitoring area. The Target-Mask module is designed to automatically identify and isolate the indirect vision areas in each image, filtering out non-target areas. This enables the model to inherit managers' expertise in assessing fire-risk zones, improving focus and resistance to interference in fire detection.In our experiments, we created an 800-image fire dataset with indirect vision. Results show that MITA-YOLO significantly reduces camera requirements while achieving superior detection performance compared to other mainstream models.
Abstract:Multimodal Large Language Model (MLLM) have demonstrated strong generalization capabilities across diverse distributions and tasks, largely due to extensive pre-training datasets. Fine-tuning MLLM has become a common practice to improve performance on specific downstream tasks. However, during fine-tuning, MLLM often faces the risk of forgetting knowledge acquired during pre-training, which can result in a decline in generalization abilities. To balance the trade-off between generalization and specialization, we propose measuring the parameter importance for both pre-trained and fine-tuning distributions, based on frozen pre-trained weight magnitude and accumulated fine-tuning gradient values. We further apply an importance-aware weight allocation strategy, selectively updating relatively important parameters for downstream tasks. We conduct empirical evaluations on both image captioning and visual question-answering tasks using various MLLM architectures. The comprehensive experimental analysis demonstrates the effectiveness of the proposed solution, highlighting the efficiency of the crucial modules in enhancing downstream specialization performance while mitigating generalization degradation in MLLM Fine-Tuning.
Abstract:Federated Learning (FL) allows collaborative machine learning training without sharing private data. Numerous studies have shown that one significant factor affecting the performance of federated learning models is the heterogeneity of data across different clients, especially when the data is sampled from various domains. A recent paper introduces variance-aware dual-level prototype clustering and uses a novel $\alpha$-sparsity prototype loss, which increases intra-class similarity and reduces inter-class similarity. To ensure that the features converge within specific clusters, we introduce an improved algorithm, Federated Prototype Learning with Convergent Clusters, abbreviated as FedPLCC. To increase inter-class distances, we weight each prototype with the size of the cluster it represents. To reduce intra-class distances, considering that prototypes with larger distances might come from different domains, we select only a certain proportion of prototypes for the loss function calculation. Evaluations on the Digit-5, Office-10, and DomainNet datasets show that our method performs better than existing approaches.
Abstract:Out-of-distribution (OOD) detection aims to detect test samples outside the training category space, which is an essential component in building reliable machine learning systems. Existing reviews on OOD detection primarily focus on method taxonomy, surveying the field by categorizing various approaches. However, many recent works concentrate on non-traditional OOD detection scenarios, such as test-time adaptation, multi-modal data sources and other novel contexts. In this survey, we uniquely review recent advances in OOD detection from the problem scenario perspective for the first time. According to whether the training process is completely controlled, we divide OOD detection methods into training-driven and training-agnostic. Besides, considering the rapid development of pre-trained models, large pre-trained model-based OOD detection is also regarded as an important category and discussed separately. Furthermore, we provide a discussion of the evaluation scenarios, a variety of applications, and several future research directions. We believe this survey with new taxonomy will benefit the proposal of new methods and the expansion of more practical scenarios. A curated list of related papers is provided in the Github repository: \url{https://github.com/shuolucs/Awesome-Out-Of-Distribution-Detection}
Abstract:Low-Rank Adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning foundation models by re-parameterizing the original matrix into the product of two low-rank matrices. Despite its efficiency, LoRA often yields inferior performance compared to full fine-tuning. In this paper, we propose LoRA-Pro to bridge this performance gap. Firstly, we delve into the optimization processes in LoRA and full fine-tuning. We reveal that while LoRA employs low-rank approximation, it neglects to approximate the optimization process of full fine-tuning. To address this, we introduce a novel concept called the "equivalent gradient." This virtual gradient makes the optimization process on the re-parameterized matrix equivalent to LoRA, which can be used to quantify the differences between LoRA and full fine-tuning. The equivalent gradient is derived from the gradients of matrices $A$ and $B$. To narrow the performance gap, our approach minimizes the differences between the equivalent gradient and the gradient obtained from full fine-tuning during the optimization process. By solving this objective, we derive optimal closed-form solutions for updating matrices $A$ and $B$. Our method constrains the optimization process, shrinking the performance gap between LoRA and full fine-tuning. Extensive experiments on natural language processing tasks validate the effectiveness of our method.
Abstract:Test-time adaptation (TTA) aims to address the distribution shift between the training and test data with only unlabeled data at test time. Existing TTA methods often focus on improving recognition performance specifically for test data associated with classes in the training set. However, during the open-world inference process, there are inevitably test data instances from unknown classes, commonly referred to as outliers. This paper pays attention to the problem that conducts both sample recognition and outlier rejection during inference while outliers exist. To address this problem, we propose a new approach called STAble Memory rePlay (STAMP), which performs optimization over a stable memory bank instead of the risky mini-batch. In particular, the memory bank is dynamically updated by selecting low-entropy and label-consistent samples in a class-balanced manner. In addition, we develop a self-weighted entropy minimization strategy that assigns higher weight to low-entropy samples. Extensive results demonstrate that STAMP outperforms existing TTA methods in terms of both recognition and outlier detection performance. The code is released at https://github.com/yuyongcan/STAMP.
Abstract:This paper investigates the one-epoch overfitting phenomenon in Click-Through Rate (CTR) models, where performance notably declines at the start of the second epoch. Despite extensive research, the efficacy of multi-epoch training over the conventional one-epoch approach remains unclear. We identify the overfitting of the embedding layer, caused by high-dimensional data sparsity, as the primary issue. To address this, we introduce a novel and simple Multi-Epoch learning with Data Augmentation (MEDA) framework, suitable for both non-continual and continual learning scenarios, which can be seamlessly integrated into existing deep CTR models and may have potential applications to handle the "forgetting or overfitting" dilemma in the retraining and the well-known catastrophic forgetting problems. MEDA minimizes overfitting by reducing the dependency of the embedding layer on subsequent training data or the Multi-Layer Perceptron (MLP) layers, and achieves data augmentation through training the MLP with varied embedding spaces. Our findings confirm that pre-trained MLP layers can adapt to new embedding spaces, enhancing performance without overfitting. This adaptability underscores the MLP layers' role in learning a matching function focused on the relative relationships among embeddings rather than their absolute positions. To our knowledge, MEDA represents the first multi-epoch training strategy tailored for deep CTR prediction models. We conduct extensive experiments on several public and business datasets, and the effectiveness of data augmentation and superiority over conventional single-epoch training are fully demonstrated. Besides, MEDA has exhibited significant benefits in a real-world online advertising system.
Abstract:Contemporary recommender systems predominantly rely on collaborative filtering techniques, employing ID-embedding to capture latent associations among users and items. However, this approach overlooks the wealth of semantic information embedded within textual descriptions of items, leading to suboptimal performance in cold-start scenarios and long-tail user recommendations. Leveraging the capabilities of Large Language Models (LLMs) pretrained on massive text corpus presents a promising avenue for enhancing recommender systems by integrating open-world domain knowledge. In this paper, we propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge. We address computational complexity concerns by utilizing pretrained LLMs as item encoders and freezing LLM parameters to avoid catastrophic forgetting and preserve open-world knowledge. To bridge the gap between the open-world and collaborative domains, we design a twin-tower structure supervised by the recommendation task and tailored for practical industrial application. Through offline experiments on the large-scale industrial dataset and online experiments on A/B tests, we demonstrate the efficacy of our approach.
Abstract:Few-shot named entity recognition can identify new types of named entities based on a few labeled examples. Previous methods employing token-level or span-level metric learning suffer from the computational burden and a large number of negative sample spans. In this paper, we propose the Hybrid Multi-stage Decoding for Few-shot NER with Entity-aware Contrastive Learning (MsFNER), which splits the general NER into two stages: entity-span detection and entity classification. There are 3 processes for introducing MsFNER: training, finetuning, and inference. In the training process, we train and get the best entity-span detection model and the entity classification model separately on the source domain using meta-learning, where we create a contrastive learning module to enhance entity representations for entity classification. During finetuning, we finetune the both models on the support dataset of target domain. In the inference process, for the unlabeled data, we first detect the entity-spans, then the entity-spans are jointly determined by the entity classification model and the KNN. We conduct experiments on the open FewNERD dataset and the results demonstrate the advance of MsFNER.
Abstract:The deepfake threats to society and cybersecurity have provoked significant public apprehension, driving intensified efforts within the realm of deepfake video detection. Current video-level methods are mostly based on {3D CNNs} resulting in high computational demands, although have achieved good performance. This paper introduces an elegantly simple yet effective strategy named Thumbnail Layout (TALL), which transforms a video clip into a pre-defined layout to realize the preservation of spatial and temporal dependencies. This transformation process involves sequentially masking frames at the same positions within each frame. These frames are then resized into sub-frames and reorganized into the predetermined layout, forming thumbnails. TALL is model-agnostic and has remarkable simplicity, necessitating only minimal code modifications. Furthermore, we introduce a graph reasoning block (GRB) and semantic consistency (SC) loss to strengthen TALL, culminating in TALL++. GRB enhances interactions between different semantic regions to capture semantic-level inconsistency clues. The semantic consistency loss imposes consistency constraints on semantic features to improve model generalization ability. Extensive experiments on intra-dataset, cross-dataset, diffusion-generated image detection, and deepfake generation method recognition show that TALL++ achieves results surpassing or comparable to the state-of-the-art methods, demonstrating the effectiveness of our approaches for various deepfake detection problems. The code is available at https://github.com/rainy-xu/TALL4Deepfake.