Abstract:Diffusion policy sampling enables reinforcement learning (RL) to represent multimodal action distributions beyond suboptimal unimodal Gaussian policies. However, existing diffusion-based RL methods primarily focus on offline settings for reward maximization, with limited consideration of safety in online settings. To address this gap, we propose Augmented Lagrangian-Guided Diffusion (ALGD), a novel algorithm for off-policy safe RL. By revisiting optimization theory and energy-based model, we show that the instability of primal-dual methods arises from the non-convex Lagrangian landscape. In diffusion-based safe RL, the Lagrangian can be interpreted as an energy function guiding the denoising dynamics. Counterintuitively, direct usage destabilizes both policy generation and training. ALGD resolves this issue by introducing an augmented Lagrangian that locally convexifies the energy landscape, yielding a stabilized policy generation and training process without altering the distribution of the optimal policy. Theoretical analysis and extensive experiments demonstrate that ALGD is both theoretically grounded and empirically effective, achieving strong and stable performance across diverse environments.
Abstract:World models have emerged as a critical frontier in AI research, aiming to enhance large models by infusing them with physical dynamics and world knowledge. The core objective is to enable agents to understand, predict, and interact with complex environments. However, current research landscape remains fragmented, with approaches predominantly focused on injecting world knowledge into isolated tasks, such as visual prediction, 3D estimation, or symbol grounding, rather than establishing a unified definition or framework. While these task-specific integrations yield performance gains, they often lack the systematic coherence required for holistic world understanding. In this paper, we analyze the limitations of such fragmented approaches and propose a unified design specification for world models. We suggest that a robust world model should not be a loose collection of capabilities but a normative framework that integrally incorporates interaction, perception, symbolic reasoning, and spatial representation. This work aims to provide a structured perspective to guide future research toward more general, robust, and principled models of the world.
Abstract:Reinforcement learning (RL) has become a key driver of language model reasoning. Among RL algorithms, Group Relative Policy Optimization (GRPO) is the de facto standard, avoiding the need for a critic by using per-prompt baselines and variance normalization. Yet why and when this normalization helps remains unclear. In this work, we provide an explanation through the lens of local curvature of the sequence-level policy gradient: standard deviation normalization implements an adaptive gradient. Theoretically, under mild conditions, GRPO enjoys a strictly improved convergence rate over unnormalized REINFORCE, with gains characterized by the average within-prompt reward standard deviation across prompts and iterations. Empirically, our analysis on GSM8K and MATH benchmarks reveals three distinct training phases governed by the interplay between feature orthogonality and reward variance: (I) an early acceleration phase where high variance and orthogonality favor adaptive scaling; (II) a relatively stable transition phase; and (III) a late-stage regime where the loss of orthogonality limits further gains. Together, these results provide a principled account of when std normalization helps in GRPO, and offer broader insights into the design of critic-free RL algorithms.
Abstract:Exogenous MDPs (Exo-MDPs) capture sequential decision-making where uncertainty comes solely from exogenous inputs that evolve independently of the learner's actions. This structure is especially common in operations research applications such as inventory control, energy storage, and resource allocation, where exogenous randomness (e.g., demand, arrivals, or prices) drives system behavior. Despite decades of empirical evidence that greedy, exploitation-only methods work remarkably well in these settings, theory has lagged behind: all existing regret guarantees for Exo-MDPs rely on explicit exploration or tabular assumptions. We show that exploration is unnecessary. We propose Pure Exploitation Learning (PEL) and prove the first general finite-sample regret bounds for exploitation-only algorithms in Exo-MDPs. In the tabular case, PEL achieves $\widetilde{O}(H^2|Ξ|\sqrt{K})$. For large, continuous endogenous state spaces, we introduce LSVI-PE, a simple linear-approximation method whose regret is polynomial in the feature dimension, exogenous state space, and horizon, independent of the endogenous state and action spaces. Our analysis introduces two new tools: counterfactual trajectories and Bellman-closed feature transport, which together allow greedy policies to have accurate value estimates without optimism. Experiments on synthetic and resource-management tasks show that PEL consistently outperforming baselines. Overall, our results overturn the conventional wisdom that exploration is required, demonstrating that in Exo-MDPs, pure exploitation is enough.
Abstract:In mathematical reasoning tasks, the advancement of Large Language Models (LLMs) relies heavily on high-quality training data with clearly defined and well-graded difficulty levels. However, existing data synthesis methods often suffer from limited diversity and lack precise control over problem difficulty, making them insufficient for supporting efficient training paradigms such as curriculum learning. To address these challenges, we propose MathMixup, a novel data synthesis paradigm that systematically generates high-quality, difficulty-controllable mathematical reasoning problems through hybrid and decomposed strategies. Automated self-checking and manual screening are incorporated to ensure semantic clarity and a well-structured difficulty gradient in the synthesized data. Building on this, we construct the MathMixupQA dataset and design a curriculum learning strategy that leverages these graded problems, supporting flexible integration with other datasets. Experimental results show that MathMixup and its curriculum learning strategy significantly enhance the mathematical reasoning performance of LLMs. Fine-tuned Qwen2.5-7B achieves an average score of 52.6\% across seven mathematical benchmarks, surpassing previous state-of-the-art methods. These results fully validate the effectiveness and broad applicability of MathMixup in improving the mathematical reasoning abilities of LLMs and advancing data-centric curriculum learning.
Abstract:The rapidly growing demand for high-quality data in Large Language Models (LLMs) has intensified the need for scalable, reliable, and semantically rich data preparation pipelines. However, current practices remain dominated by ad-hoc scripts and loosely specified workflows, which lack principled abstractions, hinder reproducibility, and offer limited support for model-in-the-loop data generation. To address these challenges, we present DataFlow, a unified and extensible LLM-driven data preparation framework. DataFlow is designed with system-level abstractions that enable modular, reusable, and composable data transformations, and provides a PyTorch-style pipeline construction API for building debuggable and optimizable dataflows. The framework consists of nearly 200 reusable operators and six domain-general pipelines spanning text, mathematical reasoning, code, Text-to-SQL, agentic RAG, and large-scale knowledge extraction. To further improve usability, we introduce DataFlow-Agent, which automatically translates natural-language specifications into executable pipelines via operator synthesis, pipeline planning, and iterative verification. Across six representative use cases, DataFlow consistently improves downstream LLM performance. Our math, code, and text pipelines outperform curated human datasets and specialized synthetic baselines, achieving up to +3\% execution accuracy in Text-to-SQL over SynSQL, +7\% average improvements on code benchmarks, and 1--3 point gains on MATH, GSM8K, and AIME. Moreover, a unified 10K-sample dataset produced by DataFlow enables base models to surpass counterparts trained on 1M Infinity-Instruct data. These results demonstrate that DataFlow provides a practical and high-performance substrate for reliable, reproducible, and scalable LLM data preparation, and establishes a system-level foundation for future data-centric AI development.




Abstract:Subject-driven image generation has advanced from single- to multi-subject composition, while neglecting distinction, the ability to identify and generate the correct subject when inputs contain multiple candidates. This limitation restricts effectiveness in complex, realistic visual settings. We propose Scone, a unified understanding-generation method that integrates composition and distinction. Scone enables the understanding expert to act as a semantic bridge, conveying semantic information and guiding the generation expert to preserve subject identity while minimizing interference. A two-stage training scheme first learns composition, then enhances distinction through semantic alignment and attention-based masking. We also introduce SconeEval, a benchmark for evaluating both composition and distinction across diverse scenarios. Experiments demonstrate that Scone outperforms existing open-source models in composition and distinction tasks on two benchmarks. Our model, benchmark, and training data are available at: https://github.com/Ryann-Ran/Scone.




Abstract:Automatic audio captioning is essential for audio understanding, enabling applications such as accessibility and content indexing. However, evaluating the quality of audio captions remains a major challenge, especially in reference-free settings where high-quality ground-truth captions are unavailable. While CLAPScore is currently the most widely used reference-free Audio Caption Evaluation Metric(ACEM), its robustness under diverse conditions has not been systematically validated. To address this gap, we introduce BRACE, a new benchmark designed to evaluate audio caption alignment quality in a reference-free setting. BRACE is primarily designed for assessing ACEMs, and can also be extended to measure the modality alignment abilities of Large Audio Language Model(LALM). BRACE consists of two sub-benchmarks: BRACE-Main for fine-grained caption comparison and BRACE-Hallucination for detecting subtle hallucinated content. We construct these datasets through high-quality filtering, LLM-based corruption, and human annotation. Given the widespread adoption of CLAPScore as a reference-free ACEM and the increasing application of LALMs in audio-language tasks, we evaluate both approaches using the BRACE benchmark, testing CLAPScore across various CLAP model variants and assessing multiple LALMs. Notably, even the best-performing CLAP-based ACEM achieves only a 70.01 F1-score on the BRACE-Main benchmark, while the best LALM reaches just 63.19. By revealing the limitations of CLAP models and LALMs, our BRACE benchmark offers valuable insights into the direction of future research.
Abstract:Recent advances in video generation have been remarkable, enabling models to produce visually compelling videos with synchronized audio. While existing video generation benchmarks provide comprehensive metrics for visual quality, they lack convincing evaluations for audio-video generation, especially for models aiming to generate synchronized audio-video outputs. To address this gap, we introduce VABench, a comprehensive and multi-dimensional benchmark framework designed to systematically evaluate the capabilities of synchronous audio-video generation. VABench encompasses three primary task types: text-to-audio-video (T2AV), image-to-audio-video (I2AV), and stereo audio-video generation. It further establishes two major evaluation modules covering 15 dimensions. These dimensions specifically assess pairwise similarities (text-video, text-audio, video-audio), audio-video synchronization, lip-speech consistency, and carefully curated audio and video question-answering (QA) pairs, among others. Furthermore, VABench covers seven major content categories: animals, human sounds, music, environmental sounds, synchronous physical sounds, complex scenes, and virtual worlds. We provide a systematic analysis and visualization of the evaluation results, aiming to establish a new standard for assessing video generation models with synchronous audio capabilities and to promote the comprehensive advancement of the field.
Abstract:Recent advances in large language models have enabled AI systems to achieve expert-level performance on domain-specific scientific tasks, yet these systems remain narrow and handcrafted. We introduce SciAgent, a unified multi-agent system designed for generalistic scientific reasoning-the ability to adapt reasoning strategies across disciplines and difficulty levels. SciAgent organizes problem solving as a hierarchical process: a Coordinator Agent interprets each problem's domain and complexity, dynamically orchestrating specialized Worker Systems, each composed of interacting reasoning Sub-agents for symbolic deduction, conceptual modeling, numerical computation, and verification. These agents collaboratively assemble and refine reasoning pipelines tailored to each task. Across mathematics and physics Olympiads (IMO, IMC, IPhO, CPhO), SciAgent consistently attains or surpasses human gold-medalist performance, demonstrating both domain generality and reasoning adaptability. Additionally, SciAgent has been tested on the International Chemistry Olympiad (IChO) and selected problems from the Humanity's Last Exam (HLE) benchmark, further confirming the system's ability to generalize across diverse scientific domains. This work establishes SciAgent as a concrete step toward generalistic scientific intelligence-AI systems capable of coherent, cross-disciplinary reasoning at expert levels.