Abstract:Dataset distillation aims to synthesize a smaller, representative dataset that preserves the essential properties of the original data, enabling efficient model training with reduced computational resources. Prior work has primarily focused on improving the alignment or matching process between original and synthetic data, or on enhancing the efficiency of distilling large datasets. In this work, we introduce ${\bf C}$ommittee ${\bf V}$oting for ${\bf D}$ataset ${\bf D}$istillation (CV-DD), a novel and orthogonal approach that leverages the collective wisdom of multiple models or experts to create high-quality distilled datasets. We start by showing how to establish a strong baseline that already achieves state-of-the-art accuracy through leveraging recent advancements and thoughtful adjustments in model design and optimization processes. By integrating distributions and predictions from a committee of models while generating high-quality soft labels, our method captures a wider spectrum of data features, reduces model-specific biases and the adverse effects of distribution shifts, leading to significant improvements in generalization. This voting-based strategy not only promotes diversity and robustness within the distilled dataset but also significantly reduces overfitting, resulting in improved performance on post-eval tasks. Extensive experiments across various datasets and IPCs (images per class) demonstrate that Committee Voting leads to more reliable and adaptable distilled data compared to single/multi-model distillation methods, demonstrating its potential for efficient and accurate dataset distillation. Code is available at: https://github.com/Jiacheng8/CV-DD.
Abstract:Non-semantic features or semantic-agnostic features, which are irrelevant to image context but sensitive to image manipulations, are recognized as evidential to Image Manipulation Localization (IML). Since manual labels are impossible, existing works rely on handcrafted methods to extract non-semantic features. Handcrafted non-semantic features jeopardize IML model's generalization ability in unseen or complex scenarios. Therefore, for IML, the elephant in the room is: How to adaptively extract non-semantic features? Non-semantic features are context-irrelevant and manipulation-sensitive. That is, within an image, they are consistent across patches unless manipulation occurs. Then, spare and discrete interactions among image patches are sufficient for extracting non-semantic features. However, image semantics vary drastically on different patches, requiring dense and continuous interactions among image patches for learning semantic representations. Hence, in this paper, we propose a Sparse Vision Transformer (SparseViT), which reformulates the dense, global self-attention in ViT into a sparse, discrete manner. Such sparse self-attention breaks image semantics and forces SparseViT to adaptively extract non-semantic features for images. Besides, compared with existing IML models, the sparse self-attention mechanism largely reduced the model size (max 80% in FLOPs), achieving stunning parameter efficiency and computation reduction. Extensive experiments demonstrate that, without any handcrafted feature extractors, SparseViT is superior in both generalization and efficiency across benchmark datasets.
Abstract:The mesoscopic level serves as a bridge between the macroscopic and microscopic worlds, addressing gaps overlooked by both. Image manipulation localization (IML), a crucial technique to pursue truth from fake images, has long relied on low-level (microscopic-level) traces. However, in practice, most tampering aims to deceive the audience by altering image semantics. As a result, manipulation commonly occurs at the object level (macroscopic level), which is equally important as microscopic traces. Therefore, integrating these two levels into the mesoscopic level presents a new perspective for IML research. Inspired by this, our paper explores how to simultaneously construct mesoscopic representations of micro and macro information for IML and introduces the Mesorch architecture to orchestrate both. Specifically, this architecture i) combines Transformers and CNNs in parallel, with Transformers extracting macro information and CNNs capturing micro details, and ii) explores across different scales, assessing micro and macro information seamlessly. Additionally, based on the Mesorch architecture, the paper introduces two baseline models aimed at solving IML tasks through mesoscopic representation. Extensive experiments across four datasets have demonstrated that our models surpass the current state-of-the-art in terms of performance, computational complexity, and robustness.
Abstract:In the field of image manipulation localization (IML), the small quantity and poor quality of existing datasets have always been major issues. A dataset containing various types of manipulations will greatly help improve the accuracy of IML models. Images on the internet (such as those on Baidu Tieba's PS Bar) are manipulated using various techniques, and creating a dataset from these images will significantly enrich the types of manipulations in our data. However, images on the internet suffer from resolution and clarity issues, and the masks obtained by simply subtracting the manipulated image from the original contain various noises. These noises are difficult to remove, rendering the masks unusable for IML models. Inspired by the field of change detection, we treat the original and manipulated images as changes over time for the same image and view the data generation task as a change detection task. However, due to clarity issues between images, conventional change detection models perform poorly. Therefore, we introduced a super-resolution module and proposed the Manipulation Mask Manufacturer (MMM) framework. It enhances the resolution of both the original and tampered images, thereby improving image details for better comparison. Simultaneously, the framework converts the original and tampered images into feature embeddings and concatenates them, effectively modeling the context. Additionally, we created the Manipulation Mask Manufacturer Dataset (MMMD), a dataset that covers a wide range of manipulation techniques. We aim to contribute to the fields of image forensics and manipulation detection by providing more realistic manipulation data through MMM and MMMD. Detailed information about MMMD and the download link can be found at: the code and datasets will be made available.
Abstract:A comprehensive benchmark is yet to be established in the Image Manipulation Detection \& Localization (IMDL) field. The absence of such a benchmark leads to insufficient and misleading model evaluations, severely undermining the development of this field. However, the scarcity of open-sourced baseline models and inconsistent training and evaluation protocols make conducting rigorous experiments and faithful comparisons among IMDL models challenging. To address these challenges, we introduce IMDL-BenCo, the first comprehensive IMDL benchmark and modular codebase. IMDL-BenCo:~\textbf{i)} decomposes the IMDL framework into standardized, reusable components and revises the model construction pipeline, improving coding efficiency and customization flexibility;~\textbf{ii)} fully implements or incorporates training code for state-of-the-art models to establish a comprehensive IMDL benchmark; and~\textbf{iii)} conducts deep analysis based on the established benchmark and codebase, offering new insights into IMDL model architecture, dataset characteristics, and evaluation standards. Specifically, IMDL-BenCo includes common processing algorithms, 8 state-of-the-art IMDL models (1 of which are reproduced from scratch), 2 sets of standard training and evaluation protocols, 15 GPU-accelerated evaluation metrics, and 3 kinds of robustness evaluation. This benchmark and codebase represent a significant leap forward in calibrating the current progress in the IMDL field and inspiring future breakthroughs. Code is available at: https://github.com/scu-zjz/IMDLBenCo
Abstract:Nowadays, multimedia forensics faces unprecedented challenges due to the rapid advancement of multimedia generation technology thereby making Image Manipulation Localization (IML) crucial in the pursuit of truth. The key to IML lies in revealing the artifacts or inconsistencies between the tampered and authentic areas, which are evident under pixel-level features. Consequently, existing studies treat IML as a low-level vision task, focusing on allocating tampered masks by crafting pixel-level features such as image RGB noises, edge signals, or high-frequency features. However, in practice, tampering commonly occurs at the object level, and different classes of objects have varying likelihoods of becoming targets of tampering. Therefore, object semantics are also vital in identifying the tampered areas in addition to pixel-level features. This necessitates IML models to carry out a semantic understanding of the entire image. In this paper, we reformulate the IML task as a high-level vision task that greatly benefits from low-level features. Based on such an interpretation, we propose a method to enhance the Masked Autoencoder (MAE) by incorporating high-resolution inputs and a perceptual loss supervision module, which is termed Perceptual MAE (PMAE). While MAE has demonstrated an impressive understanding of object semantics, PMAE can also compensate for low-level semantics with our proposed enhancements. Evidenced by extensive experiments, this paradigm effectively unites the low-level and high-level features of the IML task and outperforms state-of-the-art tampering localization methods on all five publicly available datasets.
Abstract:Deep Image Manipulation Localization (IML) models suffer from training data insufficiency and thus heavily rely on pre-training. We argue that contrastive learning is more suitable to tackle the data insufficiency problem for IML. Crafting mutually exclusive positives and negatives is the prerequisite for contrastive learning. However, when adopting contrastive learning in IML, we encounter three categories of image patches: tampered, authentic, and contour patches. Tampered and authentic patches are naturally mutually exclusive, but contour patches containing both tampered and authentic pixels are non-mutually exclusive to them. Simply abnegating these contour patches results in a drastic performance loss since contour patches are decisive to the learning outcomes. Hence, we propose the Non-mutually exclusive Contrastive Learning (NCL) framework to rescue conventional contrastive learning from the above dilemma. In NCL, to cope with the non-mutually exclusivity, we first establish a pivot structure with dual branches to constantly switch the role of contour patches between positives and negatives while training. Then, we devise a pivot-consistent loss to avoid spatial corruption caused by the role-switching process. In this manner, NCL both inherits the self-supervised merits to address the data insufficiency and retains a high manipulation localization accuracy. Extensive experiments verify that our NCL achieves state-of-the-art performance on all five benchmarks without any pre-training and is more robust on unseen real-life samples. The code is available at: https://github.com/Knightzjz/NCL-IML.
Abstract:Advanced image tampering techniques are increasingly challenging the trustworthiness of multimedia, leading to the development of Image Manipulation Localization (IML). But what makes a good IML model? The answer lies in the way to capture artifacts. Exploiting artifacts requires the model to extract non-semantic discrepancies between manipulated and authentic regions, necessitating explicit comparisons between the two areas. With the self-attention mechanism, naturally, the Transformer should be a better candidate to capture artifacts. However, due to limited datasets, there is currently no pure ViT-based approach for IML to serve as a benchmark, and CNNs dominate the entire task. Nevertheless, CNNs suffer from weak long-range and non-semantic modeling. To bridge this gap, based on the fact that artifacts are sensitive to image resolution, amplified under multi-scale features, and massive at the manipulation border, we formulate the answer to the former question as building a ViT with high-resolution capacity, multi-scale feature extraction capability, and manipulation edge supervision that could converge with a small amount of data. We term this simple but effective ViT paradigm IML-ViT, which has significant potential to become a new benchmark for IML. Extensive experiments on five benchmark datasets verified our model outperforms the state-of-the-art manipulation localization methods.Code and models are available at \url{https://github.com/SunnyHaze/IML-ViT}.
Abstract:Supply Chain Platforms (SCPs) provide downstream industries with numerous raw materials. Compared with traditional e-commerce platforms, data in SCPs is more sparse due to limited user interests. To tackle the data sparsity problem, one can apply Cross-Domain Recommendation (CDR) which improves the recommendation performance of the target domain with the source domain information. However, applying CDR to SCPs directly ignores the hierarchical structure of commodities in SCPs, which reduce the recommendation performance. To leverage this feature, in this paper, we take the catering platform as an example and propose GReS, a graphical cross-domain recommendation model. The model first constructs a tree-shaped graph to represent the hierarchy of different nodes of dishes and ingredients, and then applies our proposed Tree2vec method combining GCN and BERT models to embed the graph for recommendations. Experimental results on a commercial dataset show that GReS significantly outperforms state-of-the-art methods in Cross-Domain Recommendation for Supply Chain Platforms.