Abstract:Recently, tampered text detection has attracted increasing attention due to its essential role in information security. Although existing methods can detect the tampered text region, the interpretation of such detection remains unclear, making the prediction unreliable. To address this black-box problem, we propose to explain the basis of tampered text detection with natural language via large multimodal models. To fill the data gap for this task, we propose a large-scale, comprehensive dataset, ETTD, which contains both pixel-level annotations indicating the tampered text region and natural language annotations describing the anomaly of the tampered text. Multiple methods are employed to improve the quality of the proposed data. For example, a fused mask prompt is proposed to reduce confusion when querying GPT4o to generate anomaly descriptions. By weighting the input image with the mask annotation, the tampered region can be clearly indicated and the content in and around the tampered region can also be preserved. We also propose prompting GPT4o to recognize tampered texts and filtering out the responses with low OCR accuracy, which can effectively improve annotation quality in an automatic manner. To further improve explainable tampered text detection, we propose a simple yet effective model called TTD, which benefits from improved fine-grained perception by paying attention to the suspected region with auxiliary reference grounding query. Extensive experiments on both the ETTD dataset and the public dataset have verified the effectiveness of the proposed methods. In-depth analysis is also provided to inspire further research. The dataset and code will be made publicly available.
Abstract:Image manipulation can lead to misinterpretation of visual content, posing significant risks to information security. Image Manipulation Localization (IML) has thus received increasing attention. However, existing IML methods rely heavily on task-specific designs, making them perform well only on one target image type but are mostly random guessing on other image types, and even joint training on multiple image types causes significant performance degradation. This hinders the deployment for real applications as it notably increases maintenance costs and the misclassification of image types leads to serious error accumulation. To this end, we propose Omni-IML, the first generalist model to unify diverse IML tasks. Specifically, Omni-IML achieves generalism by adopting the Modal Gate Encoder and the Dynamic Weight Decoder to adaptively determine the optimal encoding modality and the optimal decoder filters for each sample. We additionally propose an Anomaly Enhancement module that enhances the features of tampered regions with box supervision and helps the generalist model to extract common features across different IML tasks. We validate our approach on IML tasks across three major scenarios: natural images, document images, and face images. Without bells and whistles, our Omni-IML achieves state-of-the-art performance on all three tasks with a single unified model, providing valuable strategies and insights for real-world application and future research in generalist image forensics. Our code will be publicly available.
Abstract:The rapid advancements of generative AI have fueled the potential of generative text image editing while simultaneously escalating the threat of misinformation spreading. However, existing forensics methods struggle to detect unseen forgery types that they have not been trained on, leaving the development of a model capable of generalized detection of tampered scene text as an unresolved issue. To tackle this, we propose a novel task: open-set tampered scene text detection, which evaluates forensics models on their ability to identify both seen and previously unseen forgery types. We have curated a comprehensive, high-quality dataset, featuring the texts tampered by eight text editing models, to thoroughly assess the open-set generalization capabilities. Further, we introduce a novel and effective pre-training paradigm that subtly alters the texture of selected texts within an image and trains the model to identify these regions. This approach not only mitigates the scarcity of high-quality training data but also enhances models' fine-grained perception and open-set generalization abilities. Additionally, we present DAF, a novel framework that improves open-set generalization by distinguishing between the features of authentic and tampered text, rather than focusing solely on the tampered text's features. Our extensive experiments validate the remarkable efficacy of our methods. For example, our zero-shot performance can even beat the previous state-of-the-art full-shot model by a large margin. Our dataset and code will be open-source.