Abstract:Graph Neural Networks (GNNs) have demonstrated effectiveness in various graph-based tasks. However, their inefficiency in training and inference presents challenges for scaling up to real-world and large-scale graph applications. To address the critical challenges, a range of algorithms have been proposed to accelerate training and inference of GNNs, attracting increasing attention from the research community. In this paper, we present a systematic review of acceleration algorithms in GNNs, which can be categorized into three main topics based on their purpose: training acceleration, inference acceleration, and execution acceleration. Specifically, we summarize and categorize the existing approaches for each main topic, and provide detailed characterizations of the approaches within each category. Additionally, we review several libraries related to acceleration algorithms in GNNs and discuss our Scalable Graph Learning (SGL) library. Finally, we propose promising directions for future research. A complete summary is presented in our GitHub repository: https://github.com/PKU-DAIR/SGL/blob/main/Awsome-GNN-Acceleration.md.
Abstract:Accurate channel estimation is critical to the performance of orthogonal frequency-division multiplexing (OFDM) underwater acoustic (UWA) communications, especially under multiple-input multiple-output (MIMO) scenarios. In this paper, we explore Vector Approximate Message Passing (VAMP) coupled with Expected Maximum (EM) to obtain channel estimation (CE) for MIMO OFDM UWA communications. The EM-VAMP-CE scheme is developed by employing a Bernoulli-Gaussian (BG) prior distribution for the channel impulse response, and hyperparameters of the BG prior distribution are learned via the EM algorithm. Performance of the EM-VAMP-CE is evaluated through both synthesized data and real data collected in two at-sea UWA communication experiments. It is shown the EM-VAMP-CE achieves better performance-complexity tradeoff compared with existing channel estimation methods.
Abstract:Acoustic Echo Cancellation (AEC) plays a key role in speech interaction by suppressing the echo received at microphone introduced by acoustic reverberations from loudspeakers. Since the performance of linear adaptive filter (AF) would degrade severely due to nonlinear distortions, background noises, and microphone clipping in real scenarios, deep learning has been employed for AEC for its good nonlinear modelling ability. In this paper, we constructed an end-to-end multi-scale attention neural network for AEC. Temporal convolution is first used to transform waveform into spectrogram. The spectrograms of the far-end reference and the near-end mixture are concatenated, and fed to a temporal convolution network (TCN) with stacked dilated convolution layers. Attention mechanism is performed among these representations from different layers to adaptively extract relevant features by referring to the previous hidden state in the encoder long short-term memory (LSTM) unit. The representations are weighted averaged and fed to the encoder LSTM for the near-end speech estimation. Experiments show the superiority of our method in terms of the echo return loss enhancement (ERLE) for single-talk periods and the perceptual evaluation of speech quality (PESQ) score for double-talk periods in background noise and nonlinear distortion scenarios.
Abstract:This paper proposes an noise type classification aided attention-based neural network approach for monaural speech enhancement. The network is constructed based on a previous work by introducing a noise classification subnetwork into the structure and taking the classification embedding into the attention mechanism for guiding the network to make better feature extraction. Specifically, to make the network an end-to-end way, an audio encoder and decoder constructed by temporal convolution is used to make transformation between waveform and spectrogram. Additionally, our model is composed of two long short term memory (LSTM) based encoders, two attention mechanism, a noise classifier and a speech mask generator. Experiments show that, compared with OM-LSA and the previous work, the proposed noise classification aided attention-based approach can achieve better performance in terms of speech quality (PESQ). More promisingly, our approach has better generalization ability to unseen noise conditions.
Abstract:Teaching with the cooperation of expert teacher and assistant teacher, which is the so-called "double-teachers classroom", i.e., the course is giving by the expert online and presented through projection screen at the classroom, and the teacher at the classroom performs as an assistant for guiding the students in learning, is becoming more prevalent in today's teaching method for K-12 education. For monitoring the teaching quality, a microphone clipped on the assistant's neckline is always used for voice recording, then fed to the downstream tasks of automatic speech recognition (ASR) and neural language processing (NLP). However, besides its voice, there would be some other interfering voices, including the expert's one and the student's one. Here, we propose to extract the assistant' voices from the perspective of sound event detection, i.e., the voices are classified into four categories, namely the expert, the teacher, the mixture of them, and the background. To make frame-level identification, which is important for grabbing sensitive words for the downstream tasks, a multi-scale temporal convolution neural network is constructed with stacked dilated convolutions for considering both local and global properties. These features are concatenated and fed to a classification network constructed by three linear layers. The framework is evaluated on simulated data and real-world recordings, giving considerable performance in terms of precision and recall, compared with some classical classification methods.
Abstract:Acoustic Echo Cancellation (AEC) whose aim is to suppress the echo originated from acoustic coupling between loudspeakers and microphones, plays a key role in voice interaction. Linear adaptive filter (AF) is always used for handling this problem. However, since there would be some severe effects in real scenarios, such nonlinear distortions, background noises, and microphone clipping, it would lead to considerable residual echo, giving poor performance in practice. In this paper, we propose an end-to-end network structure for echo cancellation, which is directly done on time-domain audio waveform. It is transformed to deep representation by temporal convolution, and modelled by Long Short-Term Memory (LSTM) for considering temporal property. Since time delay and severe reverberation may exist at the near-end with respect to the far-end, a local attention is employed for alignment. The network is trained using multitask learning by employing an auxiliary classification network for double-talk detection. Experiments show the superiority of our proposed method in terms of the echo return loss enhancement (ERLE) for single-talk periods and the perceptual evaluation of speech quality (PESQ) score for double-talk periods in background noise and nonlinear distortion scenarios.
Abstract:Wakeup is the primary function in voice interaction which is the mainstream scheme in man-machine interaction (HMI) applications for smart home. All devices will response if the same wake-up word is used for all devices. This will bring chaos and reduce user quality of experience (QoE). The only way to solve this problem is to make all the devices in the same wireless local area network (WLAN) competing to wake-up based on the same scoring rule. The one closest to the user would be selected for response. To this end, a competitive wakeup scheme is proposed in this paper with elaborately designed calibration method for receiving energy of microphones. Moreover, the user orientation is assisted to determine the optimal device. Experiments reveal the feasibility and validity of this scheme.
Abstract:Since space-domain information can be utilized, microphone array beamforming is often used to enhance the quality of the speech by suppressing directional disturbance. However, with the increasing number of microphone, the complexity would be increased. In this paper, a concise beamforming scheme using Maximum Signal-to-Noise Ratio (SNR) filter is proposed to reduce the beamforming complexity. The maximum SNR filter is implemented by using the estimated direction-of-arrival (DOA) of the speech source localization (SSL) and the solving method of independent vector analysis (IVA). Our experiments show that when compared with other widely-used algorithms, the proposed algorithm obtain higher gain of signal-to-interference and noise ratio (SINR).
Abstract:Acoustic Echo Cancellation (AEC) plays a key role in voice interaction. Due to the explicit mathematical principle and intelligent nature to accommodate conditions, adaptive filters with different types of implementations are always used for AEC, giving considerable performance. However, there would be some kinds of residual echo in the results, including linear residue introduced by mismatching between estimation and the reality and non-linear residue mostly caused by non-linear components on the audio devices. The linear residue can be reduced with elaborate structure and methods, leaving the non-linear residue intractable for suppression. Though, some non-linear processing methods have already be raised, they are complicated and inefficient for suppression, and would bring damage to the speech audio. In this paper, a fusion scheme by combining adaptive filter and neural network is proposed for AEC. The echo could be reduced in a large scale by adaptive filtering, resulting in little residual echo. Though it is much smaller than speech audio, it could also be perceived by human ear and would make communication annoy. The neural network is elaborately designed and trained for suppressing such residual echo. Experiments compared with prevailing methods are conducted, validating the effectiveness and superiority of the proposed combination scheme.
Abstract:We present an unsupervised framework for simultaneous appearance-based object discovery, detection, tracking and reconstruction using RGBD cameras and a robot manipulator. The system performs dense 3D simultaneous localization and mapping concurrently with unsupervised object discovery. Putative objects that are spatially and visually coherent are manipulated by the robot to gain additional motion-cues. The robot uses appearance alone, followed by structure and motion cues, to jointly discover, verify, learn and improve models of objects. Induced motion segmentation reinforces learned models which are represented implicitly as 2D and 3D level sets to capture both shape and appearance. We compare three different approaches for appearance-based object discovery and find that a novel form of spatio-temporal super-pixels gives the highest quality candidate object models in terms of precision and recall. Live experiments with a Baxter robot demonstrate a holistic pipeline capable of automatic discovery, verification, detection, tracking and reconstruction of unknown objects.