Abstract:Transfer learning of prediction models has been extensively studied, while the corresponding policy learning approaches are rarely discussed. In this paper, we propose principled approaches for learning the optimal policy in the target domain by leveraging two datasets: one with full information from the source domain and the other from the target domain with only covariates. First, under the setting of covariate shift, we formulate the problem from a perspective of causality and present the identifiability assumptions for the reward induced by a given policy. Then, we derive the efficient influence function and the semiparametric efficiency bound for the reward. Based on this, we construct a doubly robust and semiparametric efficient estimator for the reward and then learn the optimal policy by optimizing the estimated reward. Moreover, we theoretically analyze the bias and the generalization error bound for the learned policy. Furthermore, in the presence of both covariate and concept shifts, we propose a novel sensitivity analysis method to evaluate the robustness of the proposed policy learning approach. Extensive experiments demonstrate that the approach not only estimates the reward more accurately but also yields a policy that closely approximates the theoretically optimal policy.
Abstract:Large language models (LLMs) have made remarkable strides in complex reasoning tasks, but their safety and robustness in reasoning processes remain underexplored. Existing attacks on LLM reasoning are constrained by specific settings or lack of imperceptibility, limiting their feasibility and generalizability. To address these challenges, we propose the Stepwise rEasoning Error Disruption (SEED) attack, which subtly injects errors into prior reasoning steps to mislead the model into producing incorrect subsequent reasoning and final answers. Unlike previous methods, SEED is compatible with zero-shot and few-shot settings, maintains the natural reasoning flow, and ensures covert execution without modifying the instruction. Extensive experiments on four datasets across four different models demonstrate SEED's effectiveness, revealing the vulnerabilities of LLMs to disruptions in reasoning processes. These findings underscore the need for greater attention to the robustness of LLM reasoning to ensure safety in practical applications.
Abstract:Personalized decision making requires the knowledge of potential outcomes under different treatments, and confidence intervals about the potential outcomes further enrich this decision-making process and improve its reliability in high-stakes scenarios. Predicting potential outcomes along with its uncertainty in a counterfactual world poses the foundamental challenge in causal inference. Existing methods that construct confidence intervals for counterfactuals either rely on the assumption of strong ignorability, or need access to un-identifiable lower and upper bounds that characterize the difference between observational and interventional distributions. To overcome these limitations, we first propose a novel approach wTCP-DR based on transductive weighted conformal prediction, which provides confidence intervals for counterfactual outcomes with marginal converage guarantees, even under hidden confounding. With less restrictive assumptions, our approach requires access to a fraction of interventional data (from randomized controlled trials) to account for the covariate shift from observational distributoin to interventional distribution. Theoretical results explicitly demonstrate the conditions under which our algorithm is strictly advantageous to the naive method that only uses interventional data. After ensuring valid intervals on counterfactuals, it is straightforward to construct intervals for individual treatment effects (ITEs). We demonstrate our method across synthetic and real-world data, including recommendation systems, to verify the superiority of our methods compared against state-of-the-art baselines in terms of both coverage and efficiency
Abstract:News media has been utilized as a political tool to stray from facts, presenting biased claims without evidence. Amid the COVID-19 pandemic, politically biased news (PBN) has significantly undermined public trust in vaccines, despite strong medical evidence supporting their efficacy. In this paper, we analyze: (i) how inherent vaccine stances subtly influence individuals' selection of news sources and participation in social media discussions; and (ii) the impact of exposure to PBN on users' attitudes toward vaccines. In doing so, we first curate a comprehensive dataset that connects PBN with related social media discourse. Utilizing advanced deep learning and causal inference techniques, we reveal distinct user behaviors between social media groups with various vaccine stances. Moreover, we observe that individuals with moderate stances, particularly the vaccine-hesitant majority, are more vulnerable to the influence of PBN compared to those with extreme views. Our findings provide critical insights to foster this line of research.
Abstract:Data annotation is the labeling or tagging of raw data with relevant information, essential for improving the efficacy of machine learning models. The process, however, is labor-intensive and expensive. The emergence of advanced Large Language Models (LLMs), exemplified by GPT-4, presents an unprecedented opportunity to revolutionize and automate the intricate process of data annotation. While existing surveys have extensively covered LLM architecture, training, and general applications, this paper uniquely focuses on their specific utility for data annotation. This survey contributes to three core aspects: LLM-Based Data Annotation, Assessing LLM-generated Annotations, and Learning with LLM-generated annotations. Furthermore, the paper includes an in-depth taxonomy of methodologies employing LLMs for data annotation, a comprehensive review of learning strategies for models incorporating LLM-generated annotations, and a detailed discussion on primary challenges and limitations associated with using LLMs for data annotation. As a key guide, this survey aims to direct researchers and practitioners in exploring the potential of the latest LLMs for data annotation, fostering future advancements in this critical domain. We provide a comprehensive papers list at \url{https://github.com/Zhen-Tan-dmml/LLM4Annotation.git}.
Abstract:Graph contrastive learning (GCL) has emerged as a pivotal technique in the domain of graph representation learning. A crucial aspect of effective GCL is the caliber of generated positive and negative samples, which is intrinsically dictated by their resemblance to the original data. Nevertheless, precise control over similarity during sample generation presents a formidable challenge, often impeding the effective discovery of representative graph patterns. To address this challenge, we propose an innovative framework: Adversarial Curriculum Graph Contrastive Learning (ACGCL), which capitalizes on the merits of pair-wise augmentation to engender graph-level positive and negative samples with controllable similarity, alongside subgraph contrastive learning to discern effective graph patterns therein. Within the ACGCL framework, we have devised a novel adversarial curriculum training methodology that facilitates progressive learning by sequentially increasing the difficulty of distinguishing the generated samples. Notably, this approach transcends the prevalent sparsity issue inherent in conventional curriculum learning strategies by adaptively concentrating on more challenging training data. Finally, a comprehensive assessment of ACGCL is conducted through extensive experiments on six well-known benchmark datasets, wherein ACGCL conspicuously surpasses a set of state-of-the-art baselines.
Abstract:In Sequential Recommendation Systems, Cross-Entropy (CE) loss is commonly used but fails to harness item confidence scores during training. Recognizing the critical role of confidence in aligning training objectives with evaluation metrics, we propose CPFT, a versatile framework that enhances recommendation confidence by integrating Conformal Prediction (CP)-based losses with CE loss during fine-tuning. CPFT dynamically generates a set of items with a high probability of containing the ground truth, enriching the training process by incorporating validation data without compromising its role in model selection. This innovative approach, coupled with CP-based losses, sharpens the focus on refining recommendation sets, thereby elevating the confidence in potential item predictions. By fine-tuning item confidence through CP-based losses, CPFT significantly enhances model performance, leading to more precise and trustworthy recommendations that increase user trust and satisfaction. Our extensive evaluation across five diverse datasets and four distinct sequential models confirms CPFT's substantial impact on improving recommendation quality through strategic confidence optimization. Access to the framework's code will be provided following the acceptance of the paper.
Abstract:In this age where data is abundant, the ability to distill meaningful insights from the sea of information is essential. Our research addresses the computational and resource inefficiencies that current Sequential Recommender Systems (SRSs) suffer from. especially those employing attention-based models like SASRec, These systems are designed for next-item recommendations in various applications, from e-commerce to social networks. However, such systems suffer from substantial computational costs and resource consumption during the inference stage. To tackle these issues, our research proposes a novel method that combines automatic pruning techniques with advanced model architectures. We also explore the potential of resource-constrained Neural Architecture Search (NAS), a technique prevalent in the realm of recommendation systems, to fine-tune models for reduced FLOPs, latency, and energy usage while retaining or even enhancing accuracy. The main contribution of our work is developing the Elastic Architecture Search for Efficient Long-term Sequential Recommender Systems (EASRec). This approach aims to find optimal compact architectures for attention-based SRSs, ensuring accuracy retention. EASRec introduces data-aware gates that leverage historical information from input data batch to improve the performance of the recommendation network. Additionally, it utilizes a dynamic resource constraint approach, which standardizes the search process and results in more appropriate architectures. The effectiveness of our methodology is validated through exhaustive experiments on three benchmark datasets, which demonstrates EASRec's superiority in SRSs. Our research set a new standard for future exploration into efficient and accurate recommender systems, signifying a substantial advancement within this swiftly advancing field.
Abstract:Temporal Point Processes (TPPs) hold a pivotal role in modeling event sequences across diverse domains, including social networking and e-commerce, and have significantly contributed to the advancement of recommendation systems and information retrieval strategies. Through the analysis of events such as user interactions and transactions, TPPs offer valuable insights into behavioral patterns, facilitating the prediction of future trends. However, accurately forecasting future events remains a formidable challenge due to the intricate nature of these patterns. The integration of Neural Networks with TPPs has ushered in the development of advanced deep TPP models. While these models excel at processing complex and nonlinear temporal data, they encounter limitations in modeling intensity functions, grapple with computational complexities in integral computations, and struggle to capture long-range temporal dependencies effectively. In this study, we introduce the CuFun model, representing a novel approach to TPPs that revolves around the Cumulative Distribution Function (CDF). CuFun stands out by uniquely employing a monotonic neural network for CDF representation, utilizing past events as a scaling factor. This innovation significantly bolsters the model's adaptability and precision across a wide range of data scenarios. Our approach addresses several critical issues inherent in traditional TPP modeling: it simplifies log-likelihood calculations, extends applicability beyond predefined density function forms, and adeptly captures long-range temporal patterns. Our contributions encompass the introduction of a pioneering CDF-based TPP model, the development of a methodology for incorporating past event information into future event prediction, and empirical validation of CuFun's effectiveness through extensive experimentation on synthetic and real-world datasets.
Abstract:The deployment of Large Multimodal Models (LMMs) within AntGroup has significantly advanced multimodal tasks in payment, security, and advertising, notably enhancing advertisement audition tasks in Alipay. However, the deployment of such sizable models introduces challenges, particularly in increased latency and carbon emissions, which are antithetical to the ideals of Green AI. This paper introduces a novel multi-stage compression strategy for our proprietary LLM, AntGMM. Our methodology pivots on three main aspects: employing small training sample sizes, addressing multi-level redundancy through multi-stage pruning, and introducing an advanced distillation loss design. In our research, we constructed a dataset, the Multimodal Advertisement Audition Dataset (MAAD), from real-world scenarios within Alipay, and conducted experiments to validate the reliability of our proposed strategy. Furthermore, the effectiveness of our strategy is evident in its operational success in Alipay's real-world multimodal advertisement audition for three months from September 2023. Notably, our approach achieved a substantial reduction in latency, decreasing it from 700ms to 90ms, while maintaining online performance with only a slight performance decrease. Moreover, our compressed model is estimated to reduce electricity consumption by approximately 75 million kWh annually compared to the direct deployment of AntGMM, demonstrating our commitment to green AI initiatives. We will publicly release our code and the MAAD dataset after some reviews\footnote{https://github.com/MorinW/AntGMM$\_$Pruning}.