Abstract:Measuring the relative impact of CTs is important for prioritizing responses and allocating resources effectively, especially during crises. However, assessing the actual impact of CTs on the public poses unique challenges. It requires not only the collection of CT-specific knowledge but also diverse information from social, psychological, and cultural dimensions. Recent advancements in large language models (LLMs) suggest their potential utility in this context, not only due to their extensive knowledge from large training corpora but also because they can be harnessed for complex reasoning. In this work, we develop datasets of popular CTs with human-annotated impacts. Borrowing insights from human impact assessment processes, we then design tailored strategies to leverage LLMs for performing human-like CT impact assessments. Through rigorous experiments, we textit{discover that an impact assessment mode using multi-step reasoning to analyze more CT-related evidence critically produces accurate results; and most LLMs demonstrate strong bias, such as assigning higher impacts to CTs presented earlier in the prompt, while generating less accurate impact assessments for emotionally charged and verbose CTs.
Abstract:In the present work we present Training Noise Token (TNT) Pruning for vision transformers. Our method relaxes the discrete token dropping condition to continuous additive noise, providing smooth optimization in training, while retaining discrete dropping computational gains in deployment settings. We provide theoretical connections to Rate-Distortion literature, and empirical evaluations on the ImageNet dataset using ViT and DeiT architectures demonstrating TNT's advantages over previous pruning methods.
Abstract:Assessment and evaluation have long been critical challenges in artificial intelligence (AI) and natural language processing (NLP). However, traditional methods, whether matching-based or embedding-based, often fall short of judging subtle attributes and delivering satisfactory results. Recent advancements in Large Language Models (LLMs) inspire the "LLM-as-a-judge" paradigm, where LLMs are leveraged to perform scoring, ranking, or selection across various tasks and applications. This paper provides a comprehensive survey of LLM-based judgment and assessment, offering an in-depth overview to advance this emerging field. We begin by giving detailed definitions from both input and output perspectives. Then we introduce a comprehensive taxonomy to explore LLM-as-a-judge from three dimensions: what to judge, how to judge and where to judge. Finally, we compile benchmarks for evaluating LLM-as-a-judge and highlight key challenges and promising directions, aiming to provide valuable insights and inspire future research in this promising research area. Paper list and more resources about LLM-as-a-judge can be found at \url{https://github.com/llm-as-a-judge/Awesome-LLM-as-a-judge} and \url{https://llm-as-a-judge.github.io}.
Abstract:Human fact-checkers have specialized domain knowledge that allows them to formulate precise questions to verify information accuracy. However, this expert-driven approach is labor-intensive and is not scalable, especially when dealing with complex multimodal misinformation. In this paper, we propose a fully-automated framework, LRQ-Fact, for multimodal fact-checking. Firstly, the framework leverages Vision-Language Models (VLMs) and Large Language Models (LLMs) to generate comprehensive questions and answers for probing multimodal content. Next, a rule-based decision-maker module evaluates both the original content and the generated questions and answers to assess the overall veracity. Extensive experiments on two benchmarks show that LRQ-Fact improves detection accuracy for multimodal misinformation. Moreover, we evaluate its generalizability across different model backbones, offering valuable insights for further refinement.
Abstract:Decentralized social media platforms like Bluesky Social (Bluesky) have made it possible to publicly disclose some user behaviors with millisecond-level precision. Embracing Bluesky's principles of open-source and open-data, we present the first collection of the temporal dynamics of user-driven social interactions. BlueTempNet integrates multiple types of networks into a single multi-network, including user-to-user interactions (following and blocking users) and user-to-community interactions (creating and joining communities). Communities are user-formed groups in custom Feeds, where users subscribe to posts aligned with their interests. Following Bluesky's public data policy, we collect existing Bluesky Feeds, including the users who liked and generated these Feeds, and provide tools to gather users' social interactions within a date range. This data-collection strategy captures past user behaviors and supports the future data collection of user behavior.
Abstract:Despite recent advancements in detecting disinformation generated by large language models (LLMs), current efforts overlook the ever-evolving nature of this disinformation. In this work, we investigate a challenging yet practical research problem of detecting evolving LLM-generated disinformation. Disinformation evolves constantly through the rapid development of LLMs and their variants. As a consequence, the detection model faces significant challenges. First, it is inefficient to train separate models for each disinformation generator. Second, the performance decreases in scenarios when evolving LLM-generated disinformation is encountered in sequential order. To address this problem, we propose DELD (Detecting Evolving LLM-generated Disinformation), a parameter-efficient approach that jointly leverages the general fact-checking capabilities of pre-trained language models (PLM) and the independent disinformation generation characteristics of various LLMs. In particular, the learned characteristics are concatenated sequentially to facilitate knowledge accumulation and transformation. DELD addresses the issue of label scarcity by integrating the semantic embeddings of disinformation with trainable soft prompts to elicit model-specific knowledge. Our experiments show that \textit{DELD} significantly outperforms state-of-the-art methods. Moreover, our method provides critical insights into the unique patterns of disinformation generation across different LLMs, offering valuable perspectives in this line of research.
Abstract:News media has been utilized as a political tool to stray from facts, presenting biased claims without evidence. Amid the COVID-19 pandemic, politically biased news (PBN) has significantly undermined public trust in vaccines, despite strong medical evidence supporting their efficacy. In this paper, we analyze: (i) how inherent vaccine stances subtly influence individuals' selection of news sources and participation in social media discussions; and (ii) the impact of exposure to PBN on users' attitudes toward vaccines. In doing so, we first curate a comprehensive dataset that connects PBN with related social media discourse. Utilizing advanced deep learning and causal inference techniques, we reveal distinct user behaviors between social media groups with various vaccine stances. Moreover, we observe that individuals with moderate stances, particularly the vaccine-hesitant majority, are more vulnerable to the influence of PBN compared to those with extreme views. Our findings provide critical insights to foster this line of research.
Abstract:Data annotation is the labeling or tagging of raw data with relevant information, essential for improving the efficacy of machine learning models. The process, however, is labor-intensive and expensive. The emergence of advanced Large Language Models (LLMs), exemplified by GPT-4, presents an unprecedented opportunity to revolutionize and automate the intricate process of data annotation. While existing surveys have extensively covered LLM architecture, training, and general applications, this paper uniquely focuses on their specific utility for data annotation. This survey contributes to three core aspects: LLM-Based Data Annotation, Assessing LLM-generated Annotations, and Learning with LLM-generated annotations. Furthermore, the paper includes an in-depth taxonomy of methodologies employing LLMs for data annotation, a comprehensive review of learning strategies for models incorporating LLM-generated annotations, and a detailed discussion on primary challenges and limitations associated with using LLMs for data annotation. As a key guide, this survey aims to direct researchers and practitioners in exploring the potential of the latest LLMs for data annotation, fostering future advancements in this critical domain. We provide a comprehensive papers list at \url{https://github.com/Zhen-Tan-dmml/LLM4Annotation.git}.
Abstract:The advent of generative Large Language Models (LLMs) such as ChatGPT has catalyzed transformative advancements across multiple domains. However, alongside these advancements, they have also introduced potential threats. One critical concern is the misuse of LLMs by disinformation spreaders, leveraging these models to generate highly persuasive yet misleading content that challenges the disinformation detection system. This work aims to address this issue by answering three research questions: (1) To what extent can the current disinformation detection technique reliably detect LLM-generated disinformation? (2) If traditional techniques prove less effective, can LLMs themself be exploited to serve as a robust defense against advanced disinformation? and, (3) Should both these strategies falter, what novel approaches can be proposed to counter this burgeoning threat effectively? A holistic exploration for the formation and detection of disinformation is conducted to foster this line of research.
Abstract:Despite the astonishing success of COVID-19 vaccines against the virus, a substantial proportion of the population is still hesitant to be vaccinated, undermining governmental efforts to control the virus. To address this problem, we need to understand the different factors giving rise to such a behavior, including social media discourses, news media propaganda, government responses, demographic and socioeconomic statuses, and COVID-19 statistics, etc. However, existing datasets fail to cover all these aspects, making it difficult to form a complete picture in inferencing about the problem of vaccine hesitancy. In this paper, we construct a multi-source, multi-modal, and multi-feature online-offline data repository CoVaxNet. We provide descriptive analyses and insights to illustrate critical patterns in CoVaxNet. Moreover, we propose a novel approach for connecting online and offline data so as to facilitate the inference tasks that exploit complementary information sources.