Abstract:Multifaceted user modeling aims to uncover fine-grained patterns and learn representations from user data, revealing their diverse interests and characteristics, such as profile, preference, and personality. Recent studies on foundation model-based recommendation have emphasized the Transformer architecture's remarkable ability to capture complex, non-linear user-item interaction relationships. This paper aims to advance foundation model-based recommendersystems by introducing enhancements to multifaceted user modeling capabilities. We propose a novel Transformer layer designed specifically for recommendation, using the self-attention mechanism to capture sequential user-item interaction patterns. Specifically, we design a group gating network to identify user groups, enabling hierarchical discovery across different layers, thereby capturing the multifaceted nature of user interests through multiple Transformer layers. Furthermore, to broaden the data scope and further enhance multifaceted user modeling, we extend the framework to a federated setting, enabling the use of private datasets while ensuring privacy. Experimental validations on benchmark datasets demonstrate the superior performance of our proposed method. Code is available.
Abstract:User simulators can rapidly generate a large volume of timely user behavior data, providing a testing platform for reinforcement learning-based recommender systems, thus accelerating their iteration and optimization. However, prevalent user simulators generally suffer from significant limitations, including the opacity of user preference modeling and the incapability of evaluating simulation accuracy. In this paper, we introduce an LLM-powered user simulator to simulate user engagement with items in an explicit manner, thereby enhancing the efficiency and effectiveness of reinforcement learning-based recommender systems training. Specifically, we identify the explicit logic of user preferences, leverage LLMs to analyze item characteristics and distill user sentiments, and design a logical model to imitate real human engagement. By integrating a statistical model, we further enhance the reliability of the simulation, proposing an ensemble model that synergizes logical and statistical insights for user interaction simulations. Capitalizing on the extensive knowledge and semantic generation capabilities of LLMs, our user simulator faithfully emulates user behaviors and preferences, yielding high-fidelity training data that enrich the training of recommendation algorithms. We establish quantifying and qualifying experiments on five datasets to validate the simulator's effectiveness and stability across various recommendation scenarios.
Abstract:Personalization stands as the cornerstone of recommender systems (RecSys), striving to sift out redundant information and offer tailor-made services for users. However, the conventional cloud-based RecSys necessitates centralized data collection, posing significant risks of user privacy breaches. In response to this challenge, federated recommender systems (FedRecSys) have emerged, garnering considerable attention. FedRecSys enable users to retain personal data locally and solely share model parameters with low privacy sensitivity for global model training, significantly bolstering the system's privacy protection capabilities. Within the distributed learning framework, the pronounced non-iid nature of user behavior data introduces fresh hurdles to federated optimization. Meanwhile, the ability of federated learning to concurrently learn multiple models presents an opportunity for personalized user modeling. Consequently, the development of personalized FedRecSys (PFedRecSys) is crucial and holds substantial significance. This tutorial seeks to provide an introduction to PFedRecSys, encompassing (1) an overview of existing studies on PFedRecSys, (2) a comprehensive taxonomy of PFedRecSys spanning four pivotal research directions-client-side adaptation, server-side aggregation, communication efficiency, privacy and protection, and (3) exploration of open challenges and promising future directions in PFedRecSys. This tutorial aims to establish a robust foundation and spark new perspectives for subsequent exploration and practical implementations in the evolving realm of RecSys.
Abstract:Recommender systems play a pivotal role across practical scenarios, showcasing remarkable capabilities in user preference modeling. However, the centralized learning paradigm predominantly used raises serious privacy concerns. The federated recommender system (FedRS) addresses this by updating models on clients, while a central server orchestrates training without accessing private data. Existing FedRS approaches, however, face unresolved challenges, including non-convex optimization, vulnerability, potential privacy leakage risk, and communication inefficiency. This paper addresses these challenges by reformulating the federated recommendation problem as a convex optimization issue, ensuring convergence to the global optimum. Based on this, we devise a novel method, RFRec, to tackle this optimization problem efficiently. In addition, we propose RFRecF, a highly efficient version that incorporates non-uniform stochastic gradient descent to improve communication efficiency. In user preference modeling, both methods learn local and global models, collaboratively learning users' common and personalized interests under the federated learning setting. Moreover, both methods significantly enhance communication efficiency, robustness, and privacy protection, with theoretical support. Comprehensive evaluations on four benchmark datasets demonstrate RFRec and RFRecF's superior performance compared to diverse baselines.
Abstract:With the recent success of large language models, particularly foundation models with generalization abilities, applying foundation models for recommendations becomes a new paradigm to improve existing recommendation systems. It becomes a new open challenge to enable the foundation model to capture user preference changes in a timely manner with reasonable communication and computation costs while preserving privacy. This paper proposes a novel federated adaptation mechanism to enhance the foundation model-based recommendation system in a privacy-preserving manner. Specifically, each client will learn a lightweight personalized adapter using its private data. The adapter then collaborates with pre-trained foundation models to provide recommendation service efficiently with fine-grained manners. Importantly, users' private behavioral data remains secure as it is not shared with the server. This data localization-based privacy preservation is embodied via the federated learning framework. The model can ensure that shared knowledge is incorporated into all adapters while simultaneously preserving each user's personal preferences. Experimental results on four benchmark datasets demonstrate our method's superior performance. Implementation code is available to ease reproducibility.
Abstract:Multi-domain recommendation and multi-task recommendation have demonstrated their effectiveness in leveraging common information from different domains and objectives for comprehensive user modeling. Nonetheless, the practical recommendation usually faces multiple domains and tasks simultaneously, which cannot be well-addressed by current methods. To this end, we introduce M3oE, an adaptive multi-domain multi-task mixture-of-experts recommendation framework. M3oE integrates multi-domain information, maps knowledge across domains and tasks, and optimizes multiple objectives. We leverage three mixture-of-experts modules to learn common, domain-aspect, and task-aspect user preferences respectively to address the complex dependencies among multiple domains and tasks in a disentangled manner. Additionally, we design a two-level fusion mechanism for precise control over feature extraction and fusion across diverse domains and tasks. The framework's adaptability is further enhanced by applying AutoML technique, which allows dynamic structure optimization. To the best of the authors' knowledge, our M3oE is the first effort to solve multi-domain multi-task recommendation self-adaptively. Extensive experiments on two benchmark datasets against diverse baselines demonstrate M3oE's superior performance. The implementation code is available to ensure reproducibility.
Abstract:In the era of information explosion, spatio-temporal data mining serves as a critical part of urban management. Considering the various fields demanding attention, e.g., traffic state, human activity, and social event, predicting multiple spatio-temporal attributes simultaneously can alleviate regulatory pressure and foster smart city construction. However, current research can not handle the spatio-temporal multi-attribute prediction well due to the complex relationships between diverse attributes. The key challenge lies in how to address the common spatio-temporal patterns while tackling their distinctions. In this paper, we propose an effective solution for spatio-temporal multi-attribute prediction, PromptST. We devise a spatio-temporal transformer and a parameter-sharing training scheme to address the common knowledge among different spatio-temporal attributes. Then, we elaborate a spatio-temporal prompt tuning strategy to fit the specific attributes in a lightweight manner. Through the pretrain and prompt tuning phases, our PromptST is able to enhance the specific spatio-temoral characteristic capture by prompting the backbone model to fit the specific target attribute while maintaining the learned common knowledge. Extensive experiments on real-world datasets verify that our PromptST attains state-of-the-art performance. Furthermore, we also prove PromptST owns good transferability on unseen spatio-temporal attributes, which brings promising application potential in urban computing. The implementation code is available to ease reproducibility.
Abstract:Federated recommendation system is a recently emerging architecture, which provides recommendation services without exposing users' private data. Existing methods are mainly designed to recommend items already existing in the system. In practical scenarios, the system continuously introduces new items and recommends them to users, i.e., cold-start recommendation. To recommend cold items, existing federated recommendation models require collecting new interactions from users and retraining the model, which is time-consuming and poses a privacy threat to users' sensitive information. This paper presents a novel Item-guided Federated aggregation for cold-start Recommendation (IFedRec) framework. The IFedRec exchanges the item embedding to learn the common item preference semantic and preserves other model parameters locally to capture user personalization. Besides, it deploys a meta attribute network on the server to learn the item feature semantic, and a semantic alignment mechanism is presented to align both kinds of item semantic. When the new items arrive, each client can make recommendations with item feature semantic learned from the meta attribute network by incorporating the locally personalized model without retraining. Experiments on four benchmark datasets demonstrate IFedRec's outstanding performance for cold-start recommendation. Besides, in-depth analysis verifies IFedRec's learning ability for cold items while protecting user's privacy.
Abstract:Federated Recommendation is a new service architecture providing recommendations without sharing user data with the server. Existing methods deploy a recommendation model on each client and coordinate their training by synchronizing and aggregating item embeddings. However, while users usually hold diverse preferences toward certain items, these methods indiscriminately aggregate item embeddings from all clients, neutralizing underlying user-specific preferences. Such neglect will leave the aggregated embedding less discriminative and hinder personalized recommendations. This paper proposes a novel Graph-guided Personalization framework (GPFedRec) for the federated recommendation. The GPFedRec enhances cross-client collaboration by leveraging an adaptive graph structure to capture the correlation of user preferences. Besides, it guides training processes on clients by formulating them into a unified federated optimization framework, where models can simultaneously use shared and personalized user preferences. Experiments on five benchmark datasets demonstrate GPFedRec's superior performance in providing personalized recommendations.
Abstract:Spatio-Temporal prediction plays a critical role in smart city construction. Jointly modeling multiple spatio-temporal tasks can further promote an intelligent city life by integrating their inseparable relationship. However, existing studies fail to address this joint learning problem well, which generally solve tasks individually or a fixed task combination. The challenges lie in the tangled relation between different properties, the demand for supporting flexible combinations of tasks and the complex spatio-temporal dependency. To cope with the problems above, we propose an Automated Spatio-Temporal multi-task Learning (AutoSTL) method to handle multiple spatio-temporal tasks jointly. Firstly, we propose a scalable architecture consisting of advanced spatio-temporal operations to exploit the complicated dependency. Shared modules and feature fusion mechanism are incorporated to further capture the intrinsic relationship between tasks. Furthermore, our model automatically allocates the operations and fusion weight. Extensive experiments on benchmark datasets verified that our model achieves state-of-the-art performance. As we can know, AutoSTL is the first automated spatio-temporal multi-task learning method.