Abstract:Self-supervised learning~(SSL) is essential to obtain foundation models in NLP and CV domains via effectively leveraging knowledge in large-scale unlabeled data. The reason for its success is that a suitable SSL design can help the model to follow the neural scaling law, i.e., the performance consistently improves with increasing model and dataset sizes. However, it remains a mystery whether existing SSL in the graph domain can follow the scaling behavior toward building Graph Foundation Models~(GFMs) with large-scale pre-training. In this study, we examine whether existing graph SSL techniques can follow the neural scaling behavior with the potential to serve as the essential component for GFMs. Our benchmark includes comprehensive SSL technique implementations with analysis conducted on both the conventional SSL setting and many new settings adopted in other domains. Surprisingly, despite the SSL loss continuously decreasing, no existing graph SSL techniques follow the neural scaling behavior on the downstream performance. The model performance only merely fluctuates on different data scales and model scales. Instead of the scales, the key factors influencing the performance are the choices of model architecture and pretext task design. This paper examines existing SSL techniques for the feasibility of Graph SSL techniques in developing GFMs and opens a new direction for graph SSL design with the new evaluation prototype. Our code implementation is available online to ease reproducibility on https://github.com/GraphSSLScaling/GraphSSLScaling.
Abstract:Among various promising candidate technologies for the sixth-generation (6G) wireless communications, recent advances in microwave metasurfaces have sparked a new research area of reconfigurable intelligent surfaces (RISs). By controllably reprogramming the wireless propagation channel, RISs are envisioned to achieve low-cost wireless capacity boosting, coverage extension, and enhanced energy efficiency. To reprogram the channel, each meta-atom on RIS needs an external control signal, which is usually generated by base station (BS). However, BS-controlled RISs require complicated control cables, which hamper their massive deployments. Here, we eliminate the need for BS control by proposing a self-controlled RIS (SC-RIS), which is inspired by the optical holography principle. Different from the existing BS-controlled RISs, each meta-atom of SC-RIS is integrated with an additional power detector for holographic recording. By applying the classical Fourier-transform processing to the measured hologram, SC-RIS is capable of retrieving the user's channel state information required for beamforming, thus enabling autonomous RIS beamforming without control cables. Owing to this WiFi-like plug-and-play capability without the BS control, SC-RISs are expected to enable easy and massive deployments in the future 6G systems.
Abstract:The rise of self-supervised learning, which operates without the need for labeled data, has garnered significant interest within the graph learning community. This enthusiasm has led to the development of numerous Graph Contrastive Learning (GCL) techniques, all aiming to create a versatile graph encoder that leverages the wealth of unlabeled data for various downstream tasks. However, the current evaluation standards for GCL approaches are flawed due to the need for extensive hyper-parameter tuning during pre-training and the reliance on a single downstream task for assessment. These flaws can skew the evaluation away from the intended goals, potentially leading to misleading conclusions. In our paper, we thoroughly examine these shortcomings and offer fresh perspectives on how GCL methods are affected by hyper-parameter choices and the choice of downstream tasks for their evaluation. Additionally, we introduce an enhanced evaluation framework designed to more accurately gauge the effectiveness, consistency, and overall capability of GCL methods.
Abstract:Passive human sensing using wireless signals has attracted increasing attention due to its superiorities of non-contact and robustness in various lighting conditions. However, when multiple human individuals are present, their reflected signals could be intertwined in the time, frequency and spatial domains, making it challenging to separate them. To address this issue, this paper proposes a novel system for multiperson detection and monitoring of vital signs (i.e., respiration and heartbeat) with the assistance of space-time-coding (STC) reconfigurable intelligent metasurfaces (RISs). Specifically, the proposed system scans the area of interest (AoI) for human detection by using the harmonic beams generated by the STC RIS. Simultaneously, frequencyorthogonal beams are assigned to each detected person for accurate estimation of their respiration rate (RR) and heartbeat rate (HR). Furthermore, to efficiently extract the respiration signal and the much weaker heartbeat signal, we propose an improved variational mode decomposition (VMD) algorithm to accurately decompose the complex reflected signals into a smaller number of intrinsic mode functions (IMFs). We build a prototype to validate the proposed multiperson detection and vital-sign monitoring system. Experimental results demonstrate that the proposed system can simultaneously monitor the vital signs of up to four persons. The errors of RR and HR estimation using the improved VMD algorithm are below 1 RPM (respiration per minute) and 5 BPM (beats per minute), respectively. Further analysis reveals that the flexible beam controlling mechanism empowered by the STC RIS can reduce the noise reflected from other irrelative objects on the physical layer, and improve the signal-to-noise ratio of echoes from the human chest.
Abstract:Reconfigurable intelligent surfaces (RISs) have flexible and exceptional performance in manipulating electromagnetic waves and customizing wireless channels. These capabilities enable them to provide a plethora of valuable activity-related information for promoting wireless human sensing. In this article, we present a comprehensive review of passive human sensing using radio frequency signals with the assistance of RISs. Specifically, we first introduce fundamental principles and physical platform of RISs. Subsequently, based on the specific applications, we categorize the state-of-the-art human sensing techniques into three types, including human imaging,localization, and activity recognition. Meanwhile, we would also investigate the benefits that RISs bring to these applications. Furthermore, we explore the application of RISs in human micro-motion sensing, and propose a vital signs monitoring system enhanced by RISs. Experimental results are presented to demonstrate the promising potential of RISs in sensing vital signs for manipulating individuals. Finally, we discuss the technical challenges and opportunities in this field.
Abstract:With the acceleration of urbanization, traffic forecasting has become an essential role in smart city construction. In the context of spatio-temporal prediction, the key lies in how to model the dependencies of sensors. However, existing works basically only consider the micro relationships between sensors, where the sensors are treated equally, and their macroscopic dependencies are neglected. In this paper, we argue to rethink the sensor's dependency modeling from two hierarchies: regional and global perspectives. Particularly, we merge original sensors with high intra-region correlation as a region node to preserve the inter-region dependency. Then, we generate representative and common spatio-temporal patterns as global nodes to reflect a global dependency between sensors and provide auxiliary information for spatio-temporal dependency learning. In pursuit of the generality and reality of node representations, we incorporate a Meta GCN to calibrate the regional and global nodes in the physical data space. Furthermore, we devise the cross-hierarchy graph convolution to propagate information from different hierarchies. In a nutshell, we propose a Hierarchical Information Enhanced Spatio-Temporal prediction method, HIEST, to create and utilize the regional dependency and common spatio-temporal patterns. Extensive experiments have verified the leading performance of our HIEST against state-of-the-art baselines. We publicize the code to ease reproducibility.
Abstract:In the era of information explosion, spatio-temporal data mining serves as a critical part of urban management. Considering the various fields demanding attention, e.g., traffic state, human activity, and social event, predicting multiple spatio-temporal attributes simultaneously can alleviate regulatory pressure and foster smart city construction. However, current research can not handle the spatio-temporal multi-attribute prediction well due to the complex relationships between diverse attributes. The key challenge lies in how to address the common spatio-temporal patterns while tackling their distinctions. In this paper, we propose an effective solution for spatio-temporal multi-attribute prediction, PromptST. We devise a spatio-temporal transformer and a parameter-sharing training scheme to address the common knowledge among different spatio-temporal attributes. Then, we elaborate a spatio-temporal prompt tuning strategy to fit the specific attributes in a lightweight manner. Through the pretrain and prompt tuning phases, our PromptST is able to enhance the specific spatio-temoral characteristic capture by prompting the backbone model to fit the specific target attribute while maintaining the learned common knowledge. Extensive experiments on real-world datasets verify that our PromptST attains state-of-the-art performance. Furthermore, we also prove PromptST owns good transferability on unseen spatio-temporal attributes, which brings promising application potential in urban computing. The implementation code is available to ease reproducibility.
Abstract:Beamforming makes possible a focused communication method. It is extensively employed in many disciplines involving electromagnetic waves, including arrayed ultrasonic, optical, and high-speed wireless communication. Conventional beam steering often requires the addition of separate active amplitude phase control units after each radiating element. The high power consumption and complexity of large-scale phased arrays can be overcome by reducing the number of active controllers, pushing beamforming into satellite communications and deep space exploration. Here, we suggest a brand-new design for a phased array antenna with a dimension reduced cascaded angle offset (DRCAO-PAA). Furthermore, the suggested DRCAO-PAA was compressed by using the concept of singular value deposition. To pave the way for practical application the particle swarm optimization algorithm and deep neural network Transformer were adopted. Based on this theoretical framework, an experimental board was built to verify the theory. Finally, the 16/8/4 -array beam steering was demonstrated by using 4/3/2 active controllers, respectively.
Abstract:Federated learning (FL) is a promising distributed framework for collaborative artificial intelligence model training while protecting user privacy. A bootstrapping component that has attracted significant research attention is the design of incentive mechanism to stimulate user collaboration in FL. The majority of works adopt a broker-centric approach to help the central operator to attract participants and further obtain a well-trained model. Few works consider forging participant-centric collaboration among participants to pursue an FL model for their common interests, which induces dramatic differences in incentive mechanism design from the broker-centric FL. To coordinate the selfish and heterogeneous participants, we propose a novel analytic framework for incentivizing effective and efficient collaborations for participant-centric FL. Specifically, we respectively propose two novel game models for contribution-oblivious FL (COFL) and contribution-aware FL (CAFL), where the latter one implements a minimum contribution threshold mechanism. We further analyze the uniqueness and existence for Nash equilibrium of both COFL and CAFL games and design efficient algorithms to achieve equilibrium solutions. Extensive performance evaluations show that there exists free-riding phenomenon in COFL, which can be greatly alleviated through the adoption of CAFL model with the optimized minimum threshold.
Abstract:Cross-silo federated learning (FL) is a distributed learning approach where clients train a global model cooperatively while keeping their local data private. Different from cross-device FL, clients in cross-silo FL are usually organizations or companies which may execute multiple cross-silo FL processes repeatedly due to their time-varying local data sets, and aim to optimize their long-term benefits by selfishly choosing their participation levels. While there has been some work on incentivizing clients to join FL, the analysis of the long-term selfish participation behaviors of clients in cross-silo FL remains largely unexplored. In this paper, we analyze the selfish participation behaviors of heterogeneous clients in cross-silo FL. Specifically, we model the long-term selfish participation behaviors of clients as an infinitely repeated game, with the stage game being a selfish participation game in one cross-silo FL process (SPFL). For the stage game SPFL, we derive the unique Nash equilibrium (NE), and propose a distributed algorithm for each client to calculate its equilibrium participation strategy. For the long-term interactions among clients, we derive a cooperative strategy for clients which minimizes the number of free riders while increasing the amount of local data for model training. We show that enforced by a punishment strategy, such a cooperative strategy is a SPNE of the infinitely repeated game, under which some clients who are free riders at the NE of the stage game choose to be (partial) contributors. We further propose an algorithm to calculate the optimal SPNE which minimizes the number of free riders while maximizing the amount of local data for model training. Simulation results show that our proposed cooperative strategy at the optimal SPNE can effectively reduce the number of free riders and increase the amount of local data for model training.