Abstract:A Machine Learning (ML) network based on transfer learning and transformer networks is applied to wave propagation models for complex indoor settings. This network is designed to predict signal propagation in environments with a variety of objects, effectively simulating the diverse range of furniture typically found in indoor spaces. We propose Attention U-Net with Efficient Networks as the backbone, to process images encoded with the essential information of the indoor environment. The indoor environment is defined by its fundamental structure, such as the arrangement of walls, windows, and doorways, alongside varying configurations of furniture placement. An innovative algorithm is introduced to generate a 3D environment from a 2D floorplan, which is crucial for efficient collection of data for training. The model is evaluated by comparing the predicted signal coverage map with ray tracing (RT) simulations. The prediction results show a root mean square error of less than 6 dB across all tested scenarios, with significant improvements observed when using a Double U-Net structure compared to a single U-Net model.
Abstract:Pre-trained language models (PLMs) have attracted enormous attention over the past few years with their unparalleled performances. Meanwhile, the soaring cost to train PLMs as well as their amazing generalizability have jointly contributed to few-shot fine-tuning and prompting as the most popular training paradigms for natural language processing (NLP) models. Nevertheless, existing studies have shown that these NLP models can be backdoored such that model behavior is manipulated when trigger tokens are presented. In this paper, we propose PromptFix, a novel backdoor mitigation strategy for NLP models via adversarial prompt-tuning in few-shot settings. Unlike existing NLP backdoor removal methods, which rely on accurate trigger inversion and subsequent model fine-tuning, PromptFix keeps the model parameters intact and only utilizes two extra sets of soft tokens which approximate the trigger and counteract it respectively. The use of soft tokens and adversarial optimization eliminates the need to enumerate possible backdoor configurations and enables an adaptive balance between trigger finding and preservation of performance. Experiments with various backdoor attacks validate the effectiveness of the proposed method and the performances when domain shift is present further shows PromptFix's applicability to models pretrained on unknown data source which is the common case in prompt tuning scenarios.
Abstract:With the increasing availability of diverse data types, particularly images and time series data from medical experiments, there is a growing demand for techniques designed to combine various modalities of data effectively. Our motivation comes from the important areas of predicting mortality and phenotyping where using different modalities of data could significantly improve our ability to predict. To tackle this challenge, we introduce a new method that uses two separate encoders, one for each type of data, allowing the model to understand complex patterns in both visual and time-based information. Apart from the technical challenges, our goal is to make the predictive model more robust in noisy conditions and perform better than current methods. We also deal with imbalanced datasets and use an uncertainty loss function, yielding improved results while simultaneously providing a principled means of modeling uncertainty. Additionally, we include attention mechanisms to fuse different modalities, allowing the model to focus on what's important for each task. We tested our approach using the comprehensive multimodal MIMIC dataset, combining MIMIC-IV and MIMIC-CXR datasets. Our experiments show that our method is effective in improving multimodal deep learning for clinical applications. The code will be made available online.
Abstract:The recent breakthrough in large language models (LLMs) such as ChatGPT has revolutionized production processes at an unprecedented pace. Alongside this progress also comes mounting concerns about LLMs' susceptibility to jailbreaking attacks, which leads to the generation of harmful or unsafe content. While safety alignment measures have been implemented in LLMs to mitigate existing jailbreak attempts and force them to become increasingly complicated, it is still far from perfect. In this paper, we analyze the common pattern of the current safety alignment and show that it is possible to exploit such patterns for jailbreaking attacks by simultaneous obfuscation in queries and responses. Specifically, we propose WordGame attack, which replaces malicious words with word games to break down the adversarial intent of a query and encourage benign content regarding the games to precede the anticipated harmful content in the response, creating a context that is hardly covered by any corpus used for safety alignment. Extensive experiments demonstrate that WordGame attack can break the guardrails of the current leading proprietary and open-source LLMs, including the latest Claude-3, GPT-4, and Llama-3 models. Further ablation studies on such simultaneous obfuscation in query and response provide evidence of the merits of the attack strategy beyond an individual attack.
Abstract:Large Language Models (LLMs) have exhibited remarkable proficiency across a wide array of NLP tasks. However, the escalation in model size also engenders substantial deployment costs. While few efforts have explored model pruning techniques to reduce the size of LLMs, they mainly center on general or task-specific weights. This leads to suboptimal performance due to lacking specificity on the target domain or generality on different tasks when applied to domain-specific challenges. This work introduces an innovative unstructured dual-pruning methodology, D-Pruner, for domain-specific compression on LLM. It extracts a compressed, domain-specific, and task-agnostic LLM by identifying LLM weights that are pivotal for general capabilities, like linguistic capability and multi-task solving, and domain-specific knowledge. More specifically, we first assess general weight importance by quantifying the error incurred upon their removal with the help of an open-domain calibration dataset. Then, we utilize this general weight importance to refine the training loss, so that it preserves generality when fitting into a specific domain. Moreover, by efficiently approximating weight importance with the refined training loss on a domain-specific calibration dataset, we obtain a pruned model emphasizing generality and specificity. Our comprehensive experiments across various tasks in healthcare and legal domains show the effectiveness of D-Pruner in domain-specific compression. Our code is available at https://github.com/psunlpgroup/D-Pruner.
Abstract:Trajectory generation is an important task in movement studies; it circumvents the privacy, ethical, and technical challenges of collecting real trajectories from the target population. In particular, real trajectories in the wildlife domain are scarce as a result of ethical and environmental constraints of the collection process. In this paper, we consider the problem of generating long-horizon trajectories, akin to wildlife migration, based on a small set of real samples. We propose a hierarchical approach to learn the global movement characteristics of the real dataset and recursively refine localized regions. Our solution, WildGraph, discretizes the geographic path into a prototype network of H3 (https://www.uber.com/blog/h3/) regions and leverages a recurrent variational auto-encoder to probabilistically generate paths over the regions, based on occupancy. WildGraph successfully generates realistic months-long trajectories using a sample size as small as 60. Experiments performed on two wildlife migration datasets demonstrate that our proposed method improves the generalization of the generated trajectories in comparison to existing work while achieving superior or comparable performance in several benchmark metrics. Our code is published on the following repository: \url{https://github.com/aliwister/wildgraph}.
Abstract:Optical Character Recognition (OCR) is an established task with the objective of identifying the text present in an image. While many off-the-shelf OCR models exist, they are often trained for either scientific (e.g., formulae) or generic printed English text. Extracting text from chemistry publications requires an OCR model that is capable in both realms. Nougat, a recent tool, exhibits strong ability to parse academic documents, but is unable to parse tables in PubMed articles, which comprises a significant part of the academic community and is the focus of this work. To mitigate this gap, we present the Printed English and Chemical Equations (PEaCE) dataset, containing both synthetic and real-world records, and evaluate the efficacy of transformer-based OCR models when trained on this resource. Given that real-world records contain artifacts not present in synthetic records, we propose transformations that mimic such qualities. We perform a suite of experiments to explore the impact of patch size, multi-domain training, and our proposed transformations, ultimately finding that models with a small patch size trained on multiple domains using the proposed transformations yield the best performance. Our dataset and code is available at https://github.com/ZN1010/PEaCE.
Abstract:In the realm of big data and digital healthcare, Electronic Health Records (EHR) have become a rich source of information with the potential to improve patient care and medical research. In recent years, machine learning models have proliferated for analyzing EHR data to predict patients future health conditions. Among them, some studies advocate for multi-task learning (MTL) to jointly predict multiple target diseases for improving the prediction performance over single task learning. Nevertheless, current MTL frameworks for EHR data have significant limitations due to their heavy reliance on human experts to identify task groups for joint training and design model architectures. To reduce human intervention and improve the framework design, we propose an automated approach named AutoDP, which can search for the optimal configuration of task grouping and architectures simultaneously. To tackle the vast joint search space encompassing task combinations and architectures, we employ surrogate model-based optimization, enabling us to efficiently discover the optimal solution. Experimental results on real-world EHR data demonstrate the efficacy of the proposed AutoDP framework. It achieves significant performance improvements over both hand-crafted and automated state-of-the-art methods, also maintains a feasible search cost at the same time.
Abstract:Sentiment Analysis (SA) refers to the task of associating a view polarity (usually, positive, negative, or neutral; or even fine-grained such as slightly angry, sad, etc.) to a given text, essentially breaking it down to a supervised (since we have the view labels apriori) classification task. Although heavily studied in resource-rich languages such as English thus pushing the SOTA by leaps and bounds, owing to the arrival of the Transformer architecture, the same cannot be said for resource-poor languages such as Bengali (BN). For a language spoken by roughly 300 million people, the technology enabling them to run trials on their favored tongue is severely lacking. In this paper, we analyze the SOTA for SA in Bengali, particularly, Transformer-based models. We discuss available datasets, their drawbacks, the nuances associated with Bengali i.e. what makes this a challenging language to apply SA on, and finally provide insights for future direction to mitigate the limitations in the field.
Abstract:Machine Reading Comprehension (MRC) has been a long-standing problem in NLP and, with the recent introduction of the BERT family of transformer based language models, it has come a long way to getting solved. Unfortunately, however, when BERT variants trained on general text corpora are applied to domain-specific text, their performance inevitably degrades on account of the domain shift i.e. genre/subject matter discrepancy between the training and downstream application data. Knowledge graphs act as reservoirs for either open or closed domain information and prior studies have shown that they can be used to improve the performance of general-purpose transformers in domain-specific applications. Building on existing work, we introduce a method using Multi-Layer Perceptrons (MLPs) for aligning and integrating embeddings extracted from knowledge graphs with the embeddings spaces of pre-trained language models (LMs). We fuse the aligned embeddings with open-domain LMs BERT and RoBERTa, and fine-tune them for two MRC tasks namely span detection (COVID-QA) and multiple-choice questions (PubMedQA). On the COVID-QA dataset, we see that our approach allows these models to perform similar to their domain-specific counterparts, Bio/Sci-BERT, as evidenced by the Exact Match (EM) metric. With regards to PubMedQA, we observe an overall improvement in accuracy while the F1 stays relatively the same over the domain-specific models.