Abstract:Scientific hypothesis generation is a fundamentally challenging task in research, requiring the synthesis of novel and empirically grounded insights. Traditional approaches rely on human intuition and domain expertise, while purely large language model (LLM) based methods often struggle to produce hypotheses that are both innovative and reliable. To address these limitations, we propose the Monte Carlo Nash Equilibrium Self-Refine Tree (MC-NEST), a novel framework that integrates Monte Carlo Tree Search with Nash Equilibrium strategies to iteratively refine and validate hypotheses. MC-NEST dynamically balances exploration and exploitation through adaptive sampling strategies, which prioritize high-potential hypotheses while maintaining diversity in the search space. We demonstrate the effectiveness of MC-NEST through comprehensive experiments across multiple domains, including biomedicine, social science, and computer science. MC-NEST achieves average scores of 2.65, 2.74, and 2.80 (on a 1-3 scale) for novelty, clarity, significance, and verifiability metrics on the social science, computer science, and biomedicine datasets, respectively, outperforming state-of-the-art prompt-based methods, which achieve 2.36, 2.51, and 2.52 on the same datasets. These results underscore MC-NEST's ability to generate high-quality, empirically grounded hypotheses across diverse domains. Furthermore, MC-NEST facilitates structured human-AI collaboration, ensuring that LLMs augment human creativity rather than replace it. By addressing key challenges such as iterative refinement and the exploration-exploitation balance, MC-NEST sets a new benchmark in automated hypothesis generation. Additionally, MC-NEST's ethical design enables responsible AI use, emphasizing transparency and human supervision in hypothesis generation.
Abstract:Every scientific discovery starts with an idea inspired by prior work, interdisciplinary concepts, and emerging challenges. Recent advancements in large language models (LLMs) trained on scientific corpora have driven interest in AI-supported idea generation. However, generating context-aware, high-quality, and innovative ideas remains challenging. We introduce SCI-IDEA, a framework that uses LLM prompting strategies and Aha Moment detection for iterative idea refinement. SCI-IDEA extracts essential facets from research publications, assessing generated ideas on novelty, excitement, feasibility, and effectiveness. Comprehensive experiments validate SCI-IDEA's effectiveness, achieving average scores of 6.84, 6.86, 6.89, and 6.84 (on a 1-10 scale) across novelty, excitement, feasibility, and effectiveness, respectively. Evaluations employed GPT-4o, GPT-4.5, DeepSeek-32B (each under 2-shot prompting), and DeepSeek-70B (3-shot prompting), with token-level embeddings used for Aha Moment detection. Similarly, it achieves scores of 6.87, 6.86, 6.83, and 6.87 using GPT-4o under 5-shot prompting, GPT-4.5 under 3-shot prompting, DeepSeek-32B under zero-shot chain-of-thought prompting, and DeepSeek-70B under 5-shot prompting with sentence-level embeddings. We also address ethical considerations such as intellectual credit, potential misuse, and balancing human creativity with AI-driven ideation. Our results highlight SCI-IDEA's potential to facilitate the structured and flexible exploration of context-aware scientific ideas, supporting innovation while maintaining ethical standards.
Abstract:Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We urge the community to adopt a new idea: convert scholarly documents into Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units: (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright.
Abstract:Detecting hallucinations in Large Language Models (LLMs) remains a critical challenge for their reliable deployment in real-world applications. To address this, we introduce SelfCheckAgent, a novel framework integrating three different agents: the Symbolic Agent, the Specialized Detection Agent, and the Contextual Consistency Agent. These agents provide a robust multi-dimensional approach to hallucination detection. Notable results include the Contextual Consistency Agent leveraging Llama 3.1 with Chain-of-Thought (CoT) to achieve outstanding performance on the WikiBio dataset, with NonFactual hallucination detection scoring 93.64%, Factual 70.26%, and Ranking 78.48% respectively. On the AIME dataset, GPT-4o with CoT excels in NonFactual detection with 94.89% but reveals trade-offs in Factual with 30.58% and Ranking with 30.68%, underscoring the complexity of hallucination detection in the complex mathematical domains. The framework also incorporates a triangulation strategy, which increases the strengths of the SelfCheckAgent, yielding significant improvements in real-world hallucination identification. The comparative analysis demonstrates SelfCheckAgent's applicability across diverse domains, positioning it as a crucial advancement for trustworthy LLMs. These findings highlight the potentiality of consistency-driven methodologies in detecting hallucinations in LLMs.
Abstract:Mathematical reasoning has proven to be a critical yet challenging task for large language models (LLMs), as they often struggle with complex multi-step problems. To address these limitations, we introduce the Monte Carlo Nash Equilibrium Self-Refine Tree (MC-NEST) algorithm, an enhancement of the Monte Carlo Tree Self-Refine (MCTSr) approach. By integrating Nash Equilibrium strategies with LLM-based self-refinement and self-evaluation processes, MC-NEST aims to improve decision-making for complex mathematical reasoning tasks. This method ensures balanced exploration and exploitation of potential solutions, leveraging Upper Confidence Bound (UCT) scores and various selection policies. Through iterative critique and refinement, MC-NEST enhances the reasoning capabilities of LLMs, particularly for problems requiring strategic decision-making. Comparative analysis reveals that GPT-4o, equipped with MC-NEST using an Importance Sampling Policy, achieved superior accuracy in domains such as Number Theory and Geometry. These results suggest that both LLMs GPT-4o and Phi-3-mini can benefit from MC-NEST, with iterative self-refinement proving especially effective in expanding the reasoning capacity and problem-solving performance of LLMs. We evaluate the effectiveness of MC-NEST on challenging Olympiad-level benchmarks, demonstrating its potential to significantly boost complex mathematical reasoning performance in LLMs.
Abstract:The growing volume of biomedical scholarly document abstracts presents an increasing challenge in efficiently retrieving accurate and relevant information. To address this, we introduce a novel approach that integrates an optimized topic modelling framework, OVB-LDA, with the BI-POP CMA-ES optimization technique for enhanced scholarly document abstract categorization. Complementing this, we employ the distilled MiniLM model, fine-tuned on domain-specific data, for high-precision answer extraction. Our approach is evaluated across three configurations: scholarly document abstract retrieval, gold-standard scholarly documents abstract, and gold-standard snippets, consistently outperforming established methods such as RYGH and bio-answer finder. Notably, we demonstrate that extracting answers from scholarly documents abstracts alone can yield high accuracy, underscoring the sufficiency of abstracts for many biomedical queries. Despite its compact size, MiniLM exhibits competitive performance, challenging the prevailing notion that only large, resource-intensive models can handle such complex tasks. Our results, validated across various question types and evaluation batches, highlight the robustness and adaptability of our method in real-world biomedical applications. While our approach shows promise, we identify challenges in handling complex list-type questions and inconsistencies in evaluation metrics. Future work will focus on refining the topic model with more extensive domain-specific datasets, further optimizing MiniLM and utilizing large language models (LLM) to improve both precision and efficiency in biomedical question answering.
Abstract:The increasing amount of published scholarly articles, exceeding 2.5 million yearly, raises the challenge for researchers in following scientific progress. Integrating the contributions from scholarly articles into a novel type of cognitive knowledge graph (CKG) will be a crucial element for accessing and organizing scholarly knowledge, surpassing the insights provided by titles and abstracts. This research focuses on effectively conveying structured scholarly knowledge by utilizing large language models (LLMs) to categorize scholarly articles and describe their contributions in a structured and comparable manner. While previous studies explored language models within specific research domains, the extensive domain-independent knowledge captured by LLMs offers a substantial opportunity for generating structured contribution descriptions as CKGs. Additionally, LLMs offer customizable pathways through prompt engineering or fine-tuning, thus facilitating to leveraging of smaller LLMs known for their efficiency, cost-effectiveness, and environmental considerations. Our methodology involves harnessing LLM knowledge, and complementing it with domain expert-verified scholarly data sourced from a CKG. This strategic fusion significantly enhances LLM performance, especially in tasks like scholarly article categorization and predicate recommendation. Our method involves fine-tuning LLMs with CKG knowledge and additionally injecting knowledge from a CKG with a novel prompting technique significantly increasing the accuracy of scholarly knowledge extraction. We integrated our approach in the Open Research Knowledge Graph (ORKG), thus enabling precise access to organized scholarly knowledge, crucially benefiting domain-independent scholarly knowledge exchange and dissemination among policymakers, industrial practitioners, and the general public.