Abstract:In a widely popular analogy by Turing Award Laureate Yann LeCun, machine intelligence has been compared to cake - where unsupervised learning forms the base, supervised learning adds the icing, and reinforcement learning is the cherry on top. We expand this 'cake that is intelligence' analogy from a simple structural metaphor to the full life-cycle of AI systems, extending it to sourcing of ingredients (data), conception of recipes (instructions), the baking process (training), and the tasting and selling of the cake (evaluation and distribution). Leveraging our re-conceptualization, we describe each step's entailed social ramifications and how they are bounded by statistical assumptions within machine learning. Whereas these technical foundations and social impacts are deeply intertwined, they are often studied in isolation, creating barriers that restrict meaningful participation. Our re-conceptualization paves the way to bridge this gap by mapping where technical foundations interact with social outcomes, highlighting opportunities for cross-disciplinary dialogue. Finally, we conclude with actionable recommendations at each stage of the metaphorical AI cake's life-cycle, empowering prospective AI practitioners, users, and researchers, with increased awareness and ability to engage in broader AI discourse.
Abstract:Vision-language models (VLMs), which process image and text inputs, are increasingly integrated into chat assistants and other consumer AI applications. Without proper safeguards, however, VLMs may give harmful advice (e.g. how to self-harm) or encourage unsafe behaviours (e.g. to consume drugs). Despite these clear hazards, little work so far has evaluated VLM safety and the novel risks created by multimodal inputs. To address this gap, we introduce MSTS, a Multimodal Safety Test Suite for VLMs. MSTS comprises 400 test prompts across 40 fine-grained hazard categories. Each test prompt consists of a text and an image that only in combination reveal their full unsafe meaning. With MSTS, we find clear safety issues in several open VLMs. We also find some VLMs to be safe by accident, meaning that they are safe because they fail to understand even simple test prompts. We translate MSTS into ten languages, showing non-English prompts to increase the rate of unsafe model responses. We also show models to be safer when tested with text only rather than multimodal prompts. Finally, we explore the automation of VLM safety assessments, finding even the best safety classifiers to be lacking.
Abstract:Building safe Large Language Models (LLMs) across multiple languages is essential in ensuring both safe access and linguistic diversity. To this end, we introduce M-ALERT, a multilingual benchmark that evaluates the safety of LLMs in five languages: English, French, German, Italian, and Spanish. M-ALERT includes 15k high-quality prompts per language, totaling 75k, following the detailed ALERT taxonomy. Our extensive experiments on 10 state-of-the-art LLMs highlight the importance of language-specific safety analysis, revealing that models often exhibit significant inconsistencies in safety across languages and categories. For instance, Llama3.2 shows high unsafety in the category crime_tax for Italian but remains safe in other languages. Similar differences can be observed across all models. In contrast, certain categories, such as substance_cannabis and crime_propaganda, consistently trigger unsafe responses across models and languages. These findings underscore the need for robust multilingual safety practices in LLMs to ensure safe and responsible usage across diverse user communities.
Abstract:Shortcuts, also described as Clever Hans behavior, spurious correlations, or confounders, present a significant challenge in machine learning and AI, critically affecting model generalization and robustness. Research in this area, however, remains fragmented across various terminologies, hindering the progress of the field as a whole. Consequently, we introduce a unifying taxonomy of shortcut learning by providing a formal definition of shortcuts and bridging the diverse terms used in the literature. In doing so, we further establish important connections between shortcuts and related fields, including bias, causality, and security, where parallels exist but are rarely discussed. Our taxonomy organizes existing approaches for shortcut detection and mitigation, providing a comprehensive overview of the current state of the field and revealing underexplored areas and open challenges. Moreover, we compile and classify datasets tailored to study shortcut learning. Altogether, this work provides a holistic perspective to deepen understanding and drive the development of more effective strategies for addressing shortcuts in machine learning.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in generating human-like text, but their output may not be aligned with the user or even produce harmful content. This paper presents a novel approach to detect and steer concepts such as toxicity before generation. We introduce the Sparse Conditioned Autoencoder (SCAR), a single trained module that extends the otherwise untouched LLM. SCAR ensures full steerability, towards and away from concepts (e.g., toxic content), without compromising the quality of the model's text generation on standard evaluation benchmarks. We demonstrate the effective application of our approach through a variety of concepts, including toxicity, safety, and writing style alignment. As such, this work establishes a robust framework for controlling LLM generations, ensuring their ethical and safe deployment in real-world applications.
Abstract:We introduce LlavaGuard, a family of VLM-based safeguard models, offering a versatile framework for evaluating the safety compliance of visual content. Specifically, we designed LlavaGuard for dataset annotation and generative model safeguarding. To this end, we collected and annotated a high-quality visual dataset incorporating a broad safety taxonomy, which we use to tune VLMs on context-aware safety risks. As a key innovation, LlavaGuard's new responses contain comprehensive information, including a safety rating, the violated safety categories, and an in-depth rationale. Further, our introduced customizable taxonomy categories enable the context-specific alignment of LlavaGuard to various scenarios. Our experiments highlight the capabilities of LlavaGuard in complex and real-world applications. We provide checkpoints ranging from 7B to 34B parameters demonstrating state-of-the-art performance, with even the smallest models outperforming baselines like GPT-4. We make our dataset and model weights publicly available and invite further research to address the diverse needs of communities and contexts.
Abstract:When building Large Language Models (LLMs), it is paramount to bear safety in mind and protect them with guardrails. Indeed, LLMs should never generate content promoting or normalizing harmful, illegal, or unethical behavior that may contribute to harm to individuals or society. This principle applies to both normal and adversarial use. In response, we introduce ALERT, a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy. It is designed to evaluate the safety of LLMs through red teaming methodologies and consists of more than 45k instructions categorized using our novel taxonomy. By subjecting LLMs to adversarial testing scenarios, ALERT aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models. Furthermore, the fine-grained taxonomy enables researchers to perform an in-depth evaluation that also helps one to assess the alignment with various policies. In our experiments, we extensively evaluate 10 popular open- and closed-source LLMs and demonstrate that many of them still struggle to attain reasonable levels of safety.
Abstract:Pretrained language models underpin several AI applications, but their high computational cost for training limits accessibility. Initiatives such as BLOOM and StarCoder aim to democratize access to pretrained models for collaborative community development. However, such existing models face challenges: limited multilingual capabilities, continual pretraining causing catastrophic forgetting, whereas pretraining from scratch is computationally expensive, and compliance with AI safety and development laws. This paper presents Aurora-M, a 15B parameter multilingual open-source model trained on English, Finnish, Hindi, Japanese, Vietnamese, and code. Continually pretrained from StarCoderPlus on 435 billion additional tokens, Aurora-M surpasses 2 trillion tokens in total training token count. It is the first open-source multilingual model fine-tuned on human-reviewed safety instructions, thus aligning its development not only with conventional red-teaming considerations, but also with the specific concerns articulated in the Biden-Harris Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. Aurora-M is rigorously evaluated across various tasks and languages, demonstrating robustness against catastrophic forgetting and outperforming alternatives in multilingual settings, particularly in safety evaluations. To promote responsible open-source LLM development, Aurora-M and its variants are released at https://huggingface.co/collections/aurora-m/aurora-m-models-65fdfdff62471e09812f5407 .
Abstract:Text-to-image generation models have recently achieved astonishing results in image quality, flexibility, and text alignment and are consequently employed in a fast-growing number of applications. Through improvements in multilingual abilities, a larger community now has access to this kind of technology. Yet, as we will show, multilingual models suffer similarly from (gender) biases as monolingual models. Furthermore, the natural expectation is that these models will provide similar results across languages, but this is not the case and there are important differences between languages. Thus, we propose a novel benchmark MAGBIG intending to foster research in multilingual models without gender bias. We investigate whether multilingual T2I models magnify gender bias with MAGBIG. To this end, we use multilingual prompts requesting portrait images of persons of a certain occupation or trait (using adjectives). Our results show not only that models deviate from the normative assumption that each gender should be equally likely to be generated, but that there are also big differences across languages. Furthermore, we investigate prompt engineering strategies, i.e. the use of indirect, neutral formulations, as a possible remedy for these biases. Unfortunately, they help only to a limited extent and result in worse text-to-image alignment. Consequently, this work calls for more research into diverse representations across languages in image generators.
Abstract:Text-to-image diffusion models have recently received increasing interest for their astonishing ability to produce high-fidelity images from solely text inputs. Subsequent research efforts aim to exploit and apply their capabilities to real image editing. However, existing image-to-image methods are often inefficient, imprecise, and of limited versatility. They either require time-consuming fine-tuning, deviate unnecessarily strongly from the input image, and/or lack support for multiple, simultaneous edits. To address these issues, we introduce LEDITS++, an efficient yet versatile and precise textual image manipulation technique. LEDITS++'s novel inversion approach requires no tuning nor optimization and produces high-fidelity results with a few diffusion steps. Second, our methodology supports multiple simultaneous edits and is architecture-agnostic. Third, we use a novel implicit masking technique that limits changes to relevant image regions. We propose the novel TEdBench++ benchmark as part of our exhaustive evaluation. Our results demonstrate the capabilities of LEDITS++ and its improvements over previous methods. The project page is available at https://leditsplusplus-project.static.hf.space .