Abstract:Large language models excel at performing inference over text to extract information, summarize information, or generate additional text. These inference capabilities are implicated in a variety of ethical harms spanning surveillance, labor displacement, and IP/copyright theft. While many policy, legal, and technical mitigations have been proposed to counteract these harms, these mitigations typically require cooperation from institutions that move slower than technical advances (i.e., governments) or that have few incentives to act to counteract these harms (i.e., the corporations that create and profit from these LLMs). In this paper, we define and build "data defenses" -- a novel strategy that directly empowers data owners to block LLMs from performing inference on their data. We create data defenses by developing a method to automatically generate adversarial prompt injections that, when added to input text, significantly reduce the ability of LLMs to accurately infer personally identifying information about the subject of the input text or to use copyrighted text in inference. We examine the ethics of enabling such direct resistance to LLM inference, and argue that making data defenses that resist and subvert LLMs enables the realization of important values such as data ownership, data sovereignty, and democratic control over AI systems. We verify that our data defenses are cheap and fast to generate, work on the latest commercial and open-source LLMs, resistance to countermeasures, and are robust to several different attack settings. Finally, we consider the security implications of LLM data defenses and outline several future research directions in this area. Our code is available at https://github.com/wagnew3/LLMDataDefenses and a tool for using our defenses to protect text against LLM inference is at https://wagnew3.github.io/LLM-Data-Defenses/.
Abstract:Generative audio models are rapidly advancing in both capabilities and public utilization -- several powerful generative audio models have readily available open weights, and some tech companies have released high quality generative audio products. Yet, while prior work has enumerated many ethical issues stemming from the data on which generative visual and textual models have been trained, we have little understanding of similar issues with generative audio datasets, including those related to bias, toxicity, and intellectual property. To bridge this gap, we conducted a literature review of hundreds of audio datasets and selected seven of the most prominent to audit in more detail. We found that these datasets are biased against women, contain toxic stereotypes about marginalized communities, and contain significant amounts of copyrighted work. To enable artists to see if they are in popular audio datasets and facilitate exploration of the contents of these datasets, we developed a web tool audio datasets exploration tool at https://audio-audit.vercel.app.
Abstract:The recent excitement around generative models has sparked a wave of proposals suggesting the replacement of human participation and labor in research and development--e.g., through surveys, experiments, and interviews--with synthetic research data generated by large language models (LLMs). We conducted interviews with 19 qualitative researchers to understand their perspectives on this paradigm shift. Initially skeptical, researchers were surprised to see similar narratives emerge in the LLM-generated data when using the interview probe. However, over several conversational turns, they went on to identify fundamental limitations, such as how LLMs foreclose participants' consent and agency, produce responses lacking in palpability and contextual depth, and risk delegitimizing qualitative research methods. We argue that the use of LLMs as proxies for participants enacts the surrogate effect, raising ethical and epistemological concerns that extend beyond the technical limitations of current models to the core of whether LLMs fit within qualitative ways of knowing.
Abstract:As training datasets become increasingly drawn from unstructured, uncontrolled environments such as the web, researchers and industry practitioners have increasingly relied upon data filtering techniques to "filter out the noise" of web-scraped data. While datasets have been widely shown to reflect the biases and values of their creators, in this paper we contribute to an emerging body of research that assesses the filters used to create these datasets. We show that image-text data filtering also has biases and is value-laden, encoding specific notions of what is counted as "high-quality" data. In our work, we audit a standard approach of image-text CLIP-filtering on the academic benchmark DataComp's CommonPool by analyzing discrepancies of filtering through various annotation techniques across multiple modalities of image, text, and website source. We find that data relating to several imputed demographic groups -- such as LGBTQ+ people, older women, and younger men -- are associated with higher rates of exclusion. Moreover, we demonstrate cases of exclusion amplification: not only are certain marginalized groups already underrepresented in the unfiltered data, but CLIP-filtering excludes data from these groups at higher rates. The data-filtering step in the machine learning pipeline can therefore exacerbate representation disparities already present in the data-gathering step, especially when existing filters are designed to optimize a specifically-chosen downstream performance metric like zero-shot image classification accuracy. Finally, we show that the NSFW filter fails to remove sexually-explicit content from CommonPool, and that CLIP-filtering includes several categories of copyrighted content at high rates. Our conclusions point to a need for fundamental changes in dataset creation and filtering practices.
Abstract:A rapidly growing number of voices have argued that AI research, and computer vision in particular, is closely tied to mass surveillance. Yet the direct path from computer vision research to surveillance has remained obscured and difficult to assess. This study reveals the Surveillance AI pipeline. We obtain three decades of computer vision research papers and downstream patents (more than 20,000 documents) and present a rich qualitative and quantitative analysis. This analysis exposes the nature and extent of the Surveillance AI pipeline, its institutional roots and evolution, and ongoing patterns of obfuscation. We first perform an in-depth content analysis of computer vision papers and downstream patents, identifying and quantifying key features and the many, often subtly expressed, forms of surveillance that appear. On the basis of this analysis, we present a topology of Surveillance AI that characterizes the prevalent targeting of human data, practices of data transferal, and institutional data use. We find stark evidence of close ties between computer vision and surveillance. The majority (68%) of annotated computer vision papers and patents self-report their technology enables data extraction about human bodies and body parts and even more (90%) enable data extraction about humans in general.
Abstract:Bias evaluation benchmarks and dataset and model documentation have emerged as central processes for assessing the biases and harms of artificial intelligence (AI) systems. However, these auditing processes have been criticized for their failure to integrate the knowledge of marginalized communities and consider the power dynamics between auditors and the communities. Consequently, modes of bias evaluation have been proposed that engage impacted communities in identifying and assessing the harms of AI systems (e.g., bias bounties). Even so, asking what marginalized communities want from such auditing processes has been neglected. In this paper, we ask queer communities for their positions on, and desires from, auditing processes. To this end, we organized a participatory workshop to critique and redesign bias bounties from queer perspectives. We found that when given space, the scope of feedback from workshop participants goes far beyond what bias bounties afford, with participants questioning the ownership, incentives, and efficacy of bounties. We conclude by advocating for community ownership of bounties and complementing bounties with participatory processes (e.g., co-creation).
Abstract:Generative AI systems across modalities, ranging from text, image, audio, and video, have broad social impacts, but there exists no official standard for means of evaluating those impacts and which impacts should be evaluated. We move toward a standard approach in evaluating a generative AI system for any modality, in two overarching categories: what is able to be evaluated in a base system that has no predetermined application and what is able to be evaluated in society. We describe specific social impact categories and how to approach and conduct evaluations in the base technical system, then in people and society. Our framework for a base system defines seven categories of social impact: bias, stereotypes, and representational harms; cultural values and sensitive content; disparate performance; privacy and data protection; financial costs; environmental costs; and data and content moderation labor costs. Suggested methods for evaluation apply to all modalities and analyses of the limitations of existing evaluations serve as a starting point for necessary investment in future evaluations. We offer five overarching categories for what is able to be evaluated in society, each with their own subcategories: trustworthiness and autonomy; inequality, marginalization, and violence; concentration of authority; labor and creativity; and ecosystem and environment. Each subcategory includes recommendations for mitigating harm. We are concurrently crafting an evaluation repository for the AI research community to contribute existing evaluations along the given categories. This version will be updated following a CRAFT session at ACM FAccT 2023.
Abstract:We present Queer in AI as a case study for community-led participatory design in AI. We examine how participatory design and intersectional tenets started and shaped this community's programs over the years. We discuss different challenges that emerged in the process, look at ways this organization has fallen short of operationalizing participatory and intersectional principles, and then assess the organization's impact. Queer in AI provides important lessons and insights for practitioners and theorists of participatory methods broadly through its rejection of hierarchy in favor of decentralization, success at building aid and programs by and for the queer community, and effort to change actors and institutions outside of the queer community. Finally, we theorize how communities like Queer in AI contribute to the participatory design in AI more broadly by fostering cultures of participation in AI, welcoming and empowering marginalized participants, critiquing poor or exploitative participatory practices, and bringing participation to institutions outside of individual research projects. Queer in AI's work serves as a case study of grassroots activism and participatory methods within AI, demonstrating the potential of community-led participatory methods and intersectional praxis, while also providing challenges, case studies, and nuanced insights to researchers developing and using participatory methods.
Abstract:Stereotypes, bias, and discrimination have been extensively documented in Machine Learning (ML) methods such as Computer Vision (CV) [18, 80], Natural Language Processing (NLP) [6], or both, in the case of large image and caption models such as OpenAI CLIP [14]. In this paper, we evaluate how ML bias manifests in robots that physically and autonomously act within the world. We audit one of several recently published CLIP-powered robotic manipulation methods, presenting it with objects that have pictures of human faces on the surface which vary across race and gender, alongside task descriptions that contain terms associated with common stereotypes. Our experiments definitively show robots acting out toxic stereotypes with respect to gender, race, and scientifically-discredited physiognomy, at scale. Furthermore, the audited methods are less likely to recognize Women and People of Color. Our interdisciplinary sociotechnical analysis synthesizes across fields and applications such as Science Technology and Society (STS), Critical Studies, History, Safety, Robotics, and AI. We find that robots powered by large datasets and Dissolution Models (sometimes called "foundation models", e.g. CLIP) that contain humans risk physically amplifying malignant stereotypes in general; and that merely correcting disparities will be insufficient for the complexity and scale of the problem. Instead, we recommend that robot learning methods that physically manifest stereotypes or other harmful outcomes be paused, reworked, or even wound down when appropriate, until outcomes can be proven safe, effective, and just. Finally, we discuss comprehensive policy changes and the potential of new interdisciplinary research on topics like Identity Safety Assessment Frameworks and Design Justice to better understand and address these harms.
Abstract:Machine learning (ML) currently exerts an outsized influence on the world, increasingly affecting communities and institutional practices. It is therefore critical that we question vague conceptions of the field as value-neutral or universally beneficial, and investigate what specific values the field is advancing. In this paper, we present a rigorous examination of the values of the field by quantitatively and qualitatively analyzing 100 highly cited ML papers published at premier ML conferences, ICML and NeurIPS. We annotate key features of papers which reveal their values: how they justify their choice of project, which aspects they uplift, their consideration of potential negative consequences, and their institutional affiliations and funding sources. We find that societal needs are typically very loosely connected to the choice of project, if mentioned at all, and that consideration of negative consequences is extremely rare. We identify 67 values that are uplifted in machine learning research, and, of these, we find that papers most frequently justify and assess themselves based on performance, generalization, efficiency, researcher understanding, novelty, and building on previous work. We present extensive textual evidence and analysis of how these values are operationalized. Notably, we find that each of these top values is currently being defined and applied with assumptions and implications generally supporting the centralization of power. Finally, we find increasingly close ties between these highly cited papers and tech companies and elite universities.