Abstract:In August of 2024, 495 hackers generated evaluations in an open-ended bug bounty targeting the Open Language Model (OLMo) from The Allen Institute for AI. A vendor panel staffed by representatives of OLMo's safety program adjudicated changes to OLMo's documentation and awarded cash bounties to participants who successfully demonstrated a need for public disclosure clarifying the intent, capacities, and hazards of model deployment. This paper presents a collection of lessons learned, illustrative of flaw reporting best practices intended to reduce the likelihood of incidents and produce safer large language models (LLMs). These include best practices for safety reporting processes, their artifacts, and safety program staffing.
Abstract:Growing concerns about the AI alignment problem have emerged in recent years, with previous work focusing mainly on (1) qualitative descriptions of the alignment problem; (2) attempting to align AI actions with human interests by focusing on value specification and learning; and/or (3) focusing on a single agent or on humanity as a singular unit. Recent work in sociotechnical AI alignment has made some progress in defining alignment inclusively, but the field as a whole still lacks a systematic understanding of how to specify, describe, and analyze misalignment among entities, which may include individual humans, AI agents, and complex compositional entities such as corporations, nation-states, and so forth. Previous work on controversy in computational social science offers a mathematical model of contention among populations (of humans). In this paper, we adapt this contention model to the alignment problem, and show how misalignment can vary depending on the population of agents (human or otherwise) being observed, the domain in question, and the agents' probability-weighted preferences between possible outcomes. Our model departs from value specification approaches and focuses instead on the morass of complex, interlocking, sometimes contradictory goals that agents may have in practice. We apply our model by analyzing several case studies ranging from social media moderation to autonomous vehicle behavior. By applying our model with appropriately representative value data, AI engineers can ensure that their systems learn values maximally aligned with diverse human interests.
Abstract:Harm reporting in the field of Artificial Intelligence (AI) currently operates on an ad hoc basis, lacking a structured process for disclosing or addressing algorithmic flaws. In contrast, the Coordinated Vulnerability Disclosure (CVD) ethos and ecosystem play a pivotal role in software security and transparency. Within the U.S. context, there has been a protracted legal and policy struggle to establish a safe harbor from the Computer Fraud and Abuse Act, aiming to foster institutional support for security researchers acting in good faith. Notably, algorithmic flaws in Machine Learning (ML) models present distinct challenges compared to traditional software vulnerabilities, warranting a specialized approach. To address this gap, we propose the implementation of a dedicated Coordinated Flaw Disclosure (CFD) framework tailored to the intricacies of machine learning and artificial intelligence issues. This paper delves into the historical landscape of disclosures in ML, encompassing the ad hoc reporting of harms and the emergence of participatory auditing. By juxtaposing these practices with the well-established disclosure norms in cybersecurity, we argue that the broader adoption of CFD has the potential to enhance public trust through transparent processes that carefully balance the interests of both organizations and the community.
Abstract:Generative Artificial Intelligence (AI) has seen mainstream adoption lately, especially in the form of consumer-facing, open-ended, text and image generating models. However, the use of such systems raises significant ethical and safety concerns, including privacy violations, misinformation and intellectual property theft. The potential for generative AI to displace human creativity and livelihoods has also been under intense scrutiny. To mitigate these risks, there is an urgent need of policies and regulations responsible and ethical development in the field of generative AI. Existing and proposed centralized regulations by governments to rein in AI face criticisms such as not having sufficient clarity or uniformity, lack of interoperability across lines of jurisdictions, restricting innovation, and hindering free market competition. Decentralized protections via crowdsourced safety tools and mechanisms are a potential alternative. However, they have clear deficiencies in terms of lack of adequacy of oversight and difficulty of enforcement of ethical and safety standards, and are thus not enough by themselves as a regulation mechanism. We propose a marriage of these two strategies via a framework we call Dual Governance. This framework proposes a cooperative synergy between centralized government regulations in a U.S. specific context and safety mechanisms developed by the community to protect stakeholders from the harms of generative AI. By implementing the Dual Governance framework, we posit that innovation and creativity can be promoted while ensuring safe and ethical deployment of generative AI.
Abstract:Bias evaluation benchmarks and dataset and model documentation have emerged as central processes for assessing the biases and harms of artificial intelligence (AI) systems. However, these auditing processes have been criticized for their failure to integrate the knowledge of marginalized communities and consider the power dynamics between auditors and the communities. Consequently, modes of bias evaluation have been proposed that engage impacted communities in identifying and assessing the harms of AI systems (e.g., bias bounties). Even so, asking what marginalized communities want from such auditing processes has been neglected. In this paper, we ask queer communities for their positions on, and desires from, auditing processes. To this end, we organized a participatory workshop to critique and redesign bias bounties from queer perspectives. We found that when given space, the scope of feedback from workshop participants goes far beyond what bias bounties afford, with participants questioning the ownership, incentives, and efficacy of bounties. We conclude by advocating for community ownership of bounties and complementing bounties with participatory processes (e.g., co-creation).
Abstract:The operationalization of algorithmic fairness comes with several practical challenges, not the least of which is the availability or reliability of protected attributes in datasets. In real-world contexts, practical and legal impediments may prevent the collection and use of demographic data, making it difficult to ensure algorithmic fairness. While initial fairness algorithms did not consider these limitations, recent proposals aim to achieve algorithmic fairness in classification by incorporating noisiness in protected attributes or not using protected attributes at all. To the best of our knowledge, this is the first head-to-head study of fair classification algorithms to compare attribute-reliant, noise-tolerant and attribute-blind algorithms along the dual axes of predictivity and fairness. We evaluated these algorithms via case studies on four real-world datasets and synthetic perturbations. Our study reveals that attribute-blind and noise-tolerant fair classifiers can potentially achieve similar level of performance as attribute-reliant algorithms, even when protected attributes are noisy. However, implementing them in practice requires careful nuance. Our study provides insights into the practical implications of using fair classification algorithms in scenarios where protected attributes are noisy or partially available.
Abstract:We present Queer in AI as a case study for community-led participatory design in AI. We examine how participatory design and intersectional tenets started and shaped this community's programs over the years. We discuss different challenges that emerged in the process, look at ways this organization has fallen short of operationalizing participatory and intersectional principles, and then assess the organization's impact. Queer in AI provides important lessons and insights for practitioners and theorists of participatory methods broadly through its rejection of hierarchy in favor of decentralization, success at building aid and programs by and for the queer community, and effort to change actors and institutions outside of the queer community. Finally, we theorize how communities like Queer in AI contribute to the participatory design in AI more broadly by fostering cultures of participation in AI, welcoming and empowering marginalized participants, critiquing poor or exploitative participatory practices, and bringing participation to institutions outside of individual research projects. Queer in AI's work serves as a case study of grassroots activism and participatory methods within AI, demonstrating the potential of community-led participatory methods and intersectional praxis, while also providing challenges, case studies, and nuanced insights to researchers developing and using participatory methods.
Abstract:Generative Adversarial Network (GAN) based art has proliferated in the past year, going from a shiny new tool to generate fake human faces to a stage where anyone can generate thousands of artistic images with minimal effort. Some of these images are now ``good'' enough to win accolades from qualified judges. In this paper, we explore how Generative Models have impacted artistry, not only from a qualitative point of view, but also from an angle of exploitation of artisans --both via plagiarism, where models are trained on their artwork without permission, and via profit shifting, where profits in the art market have shifted from art creators to model owners or to traders in the unregulated secondary crypto market. This confluence of factors risks completely detaching humans from the artistic process, devaluing the labor of artists and distorting the public perception of the value of art.
Abstract:In this work we explore the intersection fairness and robustness in the context of ranking: when a ranking model has been calibrated to achieve some definition of fairness, is it possible for an external adversary to make the ranking model behave unfairly without having access to the model or training data? To investigate this question, we present a case study in which we develop and then attack a state-of-the-art, fairness-aware image search engine using images that have been maliciously modified using a Generative Adversarial Perturbation (GAP) model. These perturbations attempt to cause the fair re-ranking algorithm to unfairly boost the rank of images containing people from an adversary-selected subpopulation. We present results from extensive experiments demonstrating that our attacks can successfully confer significant unfair advantage to people from the majority class relative to fairly-ranked baseline search results. We demonstrate that our attacks are robust across a number of variables, that they have close to zero impact on the relevance of search results, and that they succeed under a strict threat model. Our findings highlight the danger of deploying fair machine learning algorithms in-the-wild when (1) the data necessary to achieve fairness may be adversarially manipulated, and (2) the models themselves are not robust against attacks.
Abstract:Machine Learning (ML) models are being used in all facets of today's society to make high stake decisions like bail granting or credit lending, with very minimal regulations. Such systems are extremely vulnerable to both propagating and amplifying social biases, and have therefore been subject to growing research interest. One of the main issues with conventional fairness metrics is their narrow definitions which hide the complete extent of the bias by focusing primarily on positive and/or negative outcomes, whilst not paying attention to the overall distributional shape. Moreover, these metrics are often contradictory to each other, are severely restrained by the contextual and legal landscape of the problem, have technical constraints like poor support for continuous outputs, the requirement of class labels, and are not explainable. In this paper, we present Quantile Demographic Drift, which addresses the shortcomings mentioned above. This metric can also be used to measure intra-group privilege. It is easily interpretable via existing attribution techniques, and also extends naturally to individual fairness via the principle of like-for-like comparison. We make this new fairness score the basis of a new system that is designed to detect bias in production ML models without the need for labels. We call the system FairCanary because of its capability to detect bias in a live deployed model and narrow down the alert to the responsible set of features, like the proverbial canary in a coal mine.