Among various promising candidate technologies for the sixth-generation (6G) wireless communications, recent advances in microwave metasurfaces have sparked a new research area of reconfigurable intelligent surfaces (RISs). By controllably reprogramming the wireless propagation channel, RISs are envisioned to achieve low-cost wireless capacity boosting, coverage extension, and enhanced energy efficiency. To reprogram the channel, each meta-atom on RIS needs an external control signal, which is usually generated by base station (BS). However, BS-controlled RISs require complicated control cables, which hamper their massive deployments. Here, we eliminate the need for BS control by proposing a self-controlled RIS (SC-RIS), which is inspired by the optical holography principle. Different from the existing BS-controlled RISs, each meta-atom of SC-RIS is integrated with an additional power detector for holographic recording. By applying the classical Fourier-transform processing to the measured hologram, SC-RIS is capable of retrieving the user's channel state information required for beamforming, thus enabling autonomous RIS beamforming without control cables. Owing to this WiFi-like plug-and-play capability without the BS control, SC-RISs are expected to enable easy and massive deployments in the future 6G systems.