Victor
Abstract:Fine-tuning large language models (LLMs) can cause them to lose their general capabilities. However, the intrinsic mechanisms behind such forgetting remain unexplored. In this paper, we begin by examining this phenomenon by focusing on knowledge understanding and instruction following, with the latter identified as the main contributor to forgetting during fine-tuning. Consequently, we propose the Instruction Vector (IV) framework to capture model representations highly related to specific instruction-following capabilities, thereby making it possible to understand model-intrinsic forgetting. Through the analysis of IV dynamics pre and post-training, we suggest that fine-tuning mostly adds specialized reasoning patterns instead of erasing previous skills, which may appear as forgetting. Building on this insight, we develop IV-guided training, which aims to preserve original computation graph, thereby mitigating catastrophic forgetting. Empirical tests on three benchmarks confirm the efficacy of this new approach, supporting the relationship between IVs and forgetting. Our code will be made available soon.
Abstract:Lifelong prompt tuning has significantly advanced parameter-efficient lifelong learning with its efficiency and minimal storage demands on various tasks. Our empirical studies, however, highlights certain transferability constraints in the current methodologies: a universal algorithm that guarantees consistent positive transfer across all tasks is currently unattainable, especially when dealing dissimilar tasks that may engender negative transfer. Identifying the misalignment between algorithm selection and task specificity as the primary cause of negative transfer, we present the Similarity Heuristic Lifelong Prompt Tuning (SHLPT) framework. This innovative strategy partitions tasks into two distinct subsets by harnessing a learnable similarity metric, thereby facilitating fruitful transfer from tasks regardless of their similarity or dissimilarity. Additionally, SHLPT incorporates a parameter pool to combat catastrophic forgetting effectively. Our experiments shows that SHLPT outperforms state-of-the-art techniques in lifelong learning benchmarks and demonstrates robustness against negative transfer in diverse task sequences.
Abstract:LLMs have marked a revolutonary shift, yet they falter when faced with compositional reasoning tasks. Our research embarks on a quest to uncover the root causes of compositional reasoning failures of LLMs, uncovering that most of them stem from the improperly generated or leveraged implicit reasoning results. Inspired by our empirical findings, we resort to Logit Lens and an intervention experiment to dissect the inner hidden states of LLMs. This deep dive reveals that implicit reasoning results indeed surface within middle layers and play a causative role in shaping the final explicit reasoning results. Our exploration further locates multi-head self-attention (MHSA) modules within these layers, which emerge as the linchpins in accurate generation and leveraing of implicit reasoning results. Grounded on the above findings, we develop CREME, a lightweight method to patch errors in compositional reasoning via editing the located MHSA modules. Our empirical evidence stands testament to CREME's effectiveness, paving the way for autonomously and continuously enhancing compositional reasoning capabilities in language models.
Abstract:Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly.
Abstract:Continual pre-training has been urgent for adapting a pre-trained model to a multitude of domains and tasks in the fast-evolving world. In practice, a continually pre-trained model is expected to demonstrate not only greater capacity when fine-tuned on pre-trained domains but also a non-decreasing performance on unseen ones. In this work, we first investigate such anytime fine-tuning effectiveness of existing continual pre-training approaches, concluding with unanimously decreased performance on unseen domains. To this end, we propose a prompt-guided continual pre-training method, where we train a hypernetwork to generate domain-specific prompts by both agreement and disagreement losses. The agreement loss maximally preserves the generalization of a pre-trained model to new domains, and the disagreement one guards the exclusiveness of the generated hidden states for each domain. Remarkably, prompts by the hypernetwork alleviate the domain identity when fine-tuning and promote knowledge transfer across domains. Our method achieved improvements of 3.57% and 3.4% on two real-world datasets (including domain shift and temporal shift), respectively, demonstrating its efficacy.
Abstract:Neural Temporal Point Processes (TPPs) are the prevalent paradigm for modeling continuous-time event sequences, such as user activities on the web and financial transactions. In real-world applications, event data is typically received in a \emph{streaming} manner, where the distribution of patterns may shift over time. Additionally, \emph{privacy and memory constraints} are commonly observed in practical scenarios, further compounding the challenges. Therefore, the continuous monitoring of a TPP to learn the streaming event sequence is an important yet under-explored problem. Our work paper addresses this challenge by adopting Continual Learning (CL), which makes the model capable of continuously learning a sequence of tasks without catastrophic forgetting under realistic constraints. Correspondingly, we propose a simple yet effective framework, PromptTPP\footnote{Our code is available at {\small \url{ https://github.com/yanyanSann/PromptTPP}}}, by integrating the base TPP with a continuous-time retrieval prompt pool. The prompts, small learnable parameters, are stored in a memory space and jointly optimized with the base TPP, ensuring that the model learns event streams sequentially without buffering past examples or task-specific attributes. We present a novel and realistic experimental setup for modeling event streams, where PromptTPP consistently achieves state-of-the-art performance across three real user behavior datasets.
Abstract:Neural-based multi-task learning (MTL) has gained significant improvement, and it has been successfully applied to recommendation system (RS). Recent deep MTL methods for RS (e.g. MMoE, PLE) focus on designing soft gating-based parameter-sharing networks that implicitly learn a generalized representation for each task. However, MTL methods may suffer from performance degeneration when dealing with conflicting tasks, as negative transfer effects can occur on the task-shared bottom representation. This can result in a reduced capacity for MTL methods to capture task-specific characteristics, ultimately impeding their effectiveness and hindering the ability to generalize well on all tasks. In this paper, we focus on the bottom representation learning of MTL in RS and propose the Deep Task-specific Bottom Representation Network (DTRN) to alleviate the negative transfer problem. DTRN obtains task-specific bottom representation explicitly by making each task have its own representation learning network in the bottom representation modeling stage. Specifically, it extracts the user's interests from multiple types of behavior sequences for each task through the parameter-efficient hypernetwork. To further obtain the dedicated representation for each task, DTRN refines the representation of each feature by employing a SENet-like network for each task. The two proposed modules can achieve the purpose of getting task-specific bottom representation to relieve tasks' mutual interference. Moreover, the proposed DTRN is flexible to combine with existing MTL methods. Experiments on one public dataset and one industrial dataset demonstrate the effectiveness of the proposed DTRN.
Abstract:Predictive Autoscaling is used to forecast the workloads of servers and prepare the resources in advance to ensure service level objectives (SLOs) in dynamic cloud environments. However, in practice, its prediction task often suffers from performance degradation under abnormal traffics caused by external events (such as sales promotional activities and applications re-configurations), for which a common solution is to re-train the model with data of a long historical period, but at the expense of high computational and storage costs. To better address this problem, we propose a replay-based continual learning method, i.e., Density-based Memory Selection and Hint-based Network Learning Model (DMSHM), using only a small part of the historical log to achieve accurate predictions. First, we discover the phenomenon of sample overlap when applying replay-based continual learning in prediction tasks. In order to surmount this challenge and effectively integrate new sample distribution, we propose a density-based sample selection strategy that utilizes kernel density estimation to calculate sample density as a reference to compute sample weight, and employs weight sampling to construct a new memory set. Then we implement hint-based network learning based on hint representation to optimize the parameters. Finally, we conduct experiments on public and industrial datasets to demonstrate that our proposed method outperforms state-of-the-art continual learning methods in terms of memory capacity and prediction accuracy. Furthermore, we demonstrate remarkable practicability of DMSHM in real industrial applications.
Abstract:The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Abstract:Recent efforts on scene text erasing have shown promising results. However, existing methods require rich yet costly label annotations to obtain robust models, which limits the use for practical applications. To this end, we study an unsupervised scenario by proposing a novel Self-supervised Text Erasing (STE) framework that jointly learns to synthesize training images with erasure ground-truth and accurately erase texts in the real world. We first design a style-aware image synthesis function to generate synthetic images with diverse styled texts based on two synthetic mechanisms. To bridge the text style gap between the synthetic and real-world data, a policy network is constructed to control the synthetic mechanisms by picking style parameters with the guidance of two specifically designed rewards. The synthetic training images with erasure ground-truth are then fed to train a coarse-to-fine erasing network. To produce better erasing outputs, a triplet erasure loss is designed to enforce the refinement stage to recover background textures. Moreover, we provide a new dataset (called PosterErase), which contains 60K high-resolution posters with texts and is more challenging for the text erasing task. The proposed method has been extensively evaluated with both PosterErase and the widely-used SCUT-Enstext dataset. Notably, on PosterErase, our unsupervised method achieves 5.07 in terms of FID, with a relative performance of 20.9% over existing supervised baselines.