Abstract:Gene panel selection aims to identify the most informative genomic biomarkers in label-free genomic datasets. Traditional approaches, which rely on domain expertise, embedded machine learning models, or heuristic-based iterative optimization, often introduce biases and inefficiencies, potentially obscuring critical biological signals. To address these challenges, we present an iterative gene panel selection strategy that harnesses ensemble knowledge from existing gene selection algorithms to establish preliminary boundaries or prior knowledge, which guide the initial search space. Subsequently, we incorporate reinforcement learning through a reward function shaped by expert behavior, enabling dynamic refinement and targeted selection of gene panels. This integration mitigates biases stemming from initial boundaries while capitalizing on RL's stochastic adaptability. Comprehensive comparative experiments, case studies, and downstream analyses demonstrate the effectiveness of our method, highlighting its improved precision and efficiency for label-free biomarker discovery. Our results underscore the potential of this approach to advance single-cell genomics data analysis.
Abstract:The rapid development of online recruitment platforms has created unprecedented opportunities for job seekers while concurrently posing the significant challenge of quickly and accurately pinpointing positions that align with their skills and preferences. Job recommendation systems have significantly alleviated the extensive search burden for job seekers by optimizing user engagement metrics, such as clicks and applications, thus achieving notable success. In recent years, a substantial amount of research has been devoted to developing effective job recommendation models, primarily focusing on text-matching based and behavior modeling based methods. While these approaches have realized impressive outcomes, it is imperative to note that research on the explainability of recruitment recommendations remains profoundly unexplored. To this end, in this paper, we propose DISCO, a hierarchical Disentanglement based Cognitive diagnosis framework, aimed at flexibly accommodating the underlying representation learning model for effective and interpretable job recommendations. Specifically, we first design a hierarchical representation disentangling module to explicitly mine the hierarchical skill-related factors implied in hidden representations of job seekers and jobs. Subsequently, we propose level-aware association modeling to enhance information communication and robust representation learning both inter- and intra-level, which consists of the interlevel knowledge influence module and the level-wise contrastive learning. Finally, we devise an interaction diagnosis module incorporating a neural diagnosis function for effectively modeling the multi-level recruitment interaction process between job seekers and jobs, which introduces the cognitive measurement theory.
Abstract:Accurate and timely modeling of labor migration is crucial for various urban governance and commercial tasks, such as local policy-making and business site selection. However, existing studies on labor migration largely rely on limited survey data with statistical methods, which fail to deliver timely and fine-grained insights for time-varying regional trends. To this end, we propose a deep learning-based spatial-temporal labor migration analysis framework, DHG-SIL, by leveraging large-scale job query data. Specifically, we first acquire labor migration intention as a proxy of labor migration via job queries from one of the world's largest search engines. Then, a Disprepant Homophily co-preserved Graph Convolutional Network (DH-GCN) and an interpretable temporal module are respectively proposed to capture cross-city and sequential labor migration dependencies. Besides, we introduce four interpretable variables to quantify city migration properties, which are co-optimized with city representations via tailor-designed contrastive losses. Extensive experiments on three real-world datasets demonstrate the superiority of our DHG-SIL. Notably, DHG-SIL has been deployed as a core component of a cooperative partner's intelligent human resource system, and the system supported a series of city talent attraction reports.
Abstract:Labor market forecasting on talent demand and supply is essential for business management and economic development. With accurate and timely forecasts, employers can adapt their recruitment strategies to align with the evolving labor market, and employees can have proactive career path planning according to future demand and supply. However, previous studies ignore the interconnection between demand-supply sequences among different companies and positions for predicting variations. Moreover, companies are reluctant to share their private human resource data for global labor market analysis due to concerns over jeopardizing competitive advantage, security threats, and potential ethical or legal violations. To this end, in this paper, we formulate the Federated Labor Market Forecasting (FedLMF) problem and propose a Meta-personalized Convergence-aware Clustered Federated Learning (MPCAC-FL) framework to provide accurate and timely collaborative talent demand and supply prediction in a privacy-preserving way. First, we design a graph-based sequential model to capture the inherent correlation between demand and supply sequences and company-position pairs. Second, we adopt meta-learning techniques to learn effective initial model parameters that can be shared across companies, allowing personalized models to be optimized for forecasting company-specific demand and supply, even when companies have heterogeneous data. Third, we devise a Convergence-aware Clustering algorithm to dynamically divide companies into groups according to model similarity and apply federated aggregation in each group. The heterogeneity can be alleviated for more stable convergence and better performance. Extensive experiments demonstrate that MPCAC-FL outperforms compared baselines on three real-world datasets and achieves over 97% of the state-of-the-art model, i.e., DH-GEM, without exposing private company data.
Abstract:Visual geo-localization demands in-depth knowledge and advanced reasoning skills to associate images with real-world geographic locations precisely. In general, traditional methods based on data-matching are hindered by the impracticality of storing adequate visual records of global landmarks. Recently, Large Vision-Language Models (LVLMs) have demonstrated the capability of geo-localization through Visual Question Answering (VQA), enabling a solution that does not require external geo-tagged image records. However, the performance of a single LVLM is still limited by its intrinsic knowledge and reasoning capabilities. Along this line, in this paper, we introduce a novel visual geo-localization framework called \name\ that integrates the inherent knowledge of multiple LVLM agents via inter-agent communication to achieve effective geo-localization of images. Furthermore, our framework employs a dynamic learning strategy to optimize the communication patterns among agents, reducing unnecessary discussions among agents and improving the efficiency of the framework. To validate the effectiveness of the proposed framework, we construct GeoGlobe, a novel dataset for visual geo-localization tasks. Extensive testing on the dataset demonstrates that our approach significantly outperforms state-of-the-art methods.
Abstract:Reciprocal recommender systems~(RRS), conducting bilateral recommendations between two involved parties, have gained increasing attention for enhancing matching efficiency. However, the majority of existing methods in the literature still reuse conventional ranking metrics to separately assess the performance on each side of the recommendation process. These methods overlook the fact that the ranking outcomes of both sides collectively influence the effectiveness of the RRS, neglecting the necessity of a more holistic evaluation and a capable systemic solution. In this paper, we systemically revisit the task of reciprocal recommendation, by introducing the new metrics, formulation, and method. Firstly, we propose five new evaluation metrics that comprehensively and accurately assess the performance of RRS from three distinct perspectives: overall coverage, bilateral stability, and balanced ranking. These metrics provide a more holistic understanding of the system's effectiveness and enable a comprehensive evaluation. Furthermore, we formulate the RRS from a causal perspective, formulating recommendations as bilateral interventions, which can better model the decoupled effects of potential influencing factors. By utilizing the potential outcome framework, we further develop a model-agnostic causal reciprocal recommendation method that considers the causal effects of recommendations. Additionally, we introduce a reranking strategy to maximize matching outcomes, as measured by the proposed metrics. Extensive experiments on two real-world datasets from recruitment and dating scenarios demonstrate the effectiveness of our proposed metrics and approach. The code and dataset are available at: https://github.com/RUCAIBox/CRRS.
Abstract:In this paper, we present the technical details and periodic findings of our project, CareerAgent, which aims to build a generative simulation framework for a Holacracy organization using Large Language Model-based Autonomous Agents. Specifically, the simulation framework includes three phases: construction, execution, and evaluation, and it incorporates basic characteristics of individuals, organizations, tasks, and meetings. Through our simulation, we obtained several interesting findings. At the organizational level, an increase in the average values of management competence and functional competence can reduce overall members' stress levels, but it negatively impacts deeper organizational performance measures such as average task completion. At the individual level, both competences can improve members' work performance. From the analysis of social networks, we found that highly competent members selectively participate in certain tasks and take on more responsibilities. Over time, small sub-communities form around these highly competent members within the holacracy. These findings contribute theoretically to the study of organizational science and provide practical insights for managers to understand the organization dynamics.
Abstract:Recent advancements in Large Language Models (LLMs) have significantly extended their capabilities, evolving from basic text generation to complex, human-like interactions. In light of the possibilities that LLMs could assume significant workplace responsibilities, it becomes imminently necessary to explore LLMs' capacities as professional assistants. This study focuses on the aspect of career interests by applying the Occupation Network's Interest Profiler short form to LLMs as if they were human participants and investigates their hypothetical career interests and competence, examining how these vary with language changes and model advancements. We analyzed the answers using a general linear mixed model approach and found distinct career interest inclinations among LLMs, particularly towards the social and artistic domains. Interestingly, these preferences did not align with the occupations where LLMs exhibited higher competence. This novel approach of using psychometric instruments and sophisticated statistical tools on LLMs unveils fresh perspectives on their integration into professional environments, highlighting human-like tendencies and promoting a reevaluation of LLMs' self-perception and competency alignment in the workforce.
Abstract:Many studies have revealed that large language models (LLMs) exhibit uneven awareness of different contextual positions.Their limited context awareness can lead to overlooking critical information and subsequent task failures. While several approaches have been proposed to enhance LLMs' context awareness, achieving both effectiveness and efficiency remains challenging.In this paper, for LLMs utilizing RoPE as position embeddings, we introduce a novel method called ``Mixture of In-Context Experts'' (MoICE) to address this challenge. MoICE comprises two key components: a router integrated into each attention head within LLMs and a lightweight router-only training optimization strategy: (1) MoICE views each RoPE angle as an `in-context' expert, demonstrated to be capable of directing the attention of a head to specific contextual positions. Consequently, each attention head flexibly processes tokens using multiple RoPE angles dynamically selected by the router to attend to the needed positions. This approach mitigates the risk of overlooking essential contextual information. (2) The router-only training strategy entails freezing LLM parameters and exclusively updating routers for only a few steps. When applied to open-source LLMs including Llama and Mistral, MoICE surpasses prior methods across multiple tasks on long context understanding and generation, all while maintaining commendable inference efficiency.
Abstract:Job recommender systems are crucial for aligning job opportunities with job-seekers in online job-seeking. However, users tend to adjust their job preferences to secure employment opportunities continually, which limits the performance of job recommendations. The inherent frequency of preference drift poses a challenge to promptly and precisely capture user preferences. To address this issue, we propose a novel session-based framework, BISTRO, to timely model user preference through fusion learning of semantic and behavioral information. Specifically, BISTRO is composed of three stages: 1) coarse-grained semantic clustering, 2) fine-grained job preference extraction, and 3) personalized top-$k$ job recommendation. Initially, BISTRO segments the user interaction sequence into sessions and leverages session-based semantic clustering to achieve broad identification of person-job matching. Subsequently, we design a hypergraph wavelet learning method to capture the nuanced job preference drift. To mitigate the effect of noise in interactions caused by frequent preference drift, we innovatively propose an adaptive wavelet filtering technique to remove noisy interaction. Finally, a recurrent neural network is utilized to analyze session-based interaction for inferring personalized preferences. Extensive experiments on three real-world offline recruitment datasets demonstrate the significant performances of our framework. Significantly, BISTRO also excels in online experiments, affirming its effectiveness in live recruitment settings. This dual success underscores the robustness and adaptability of BISTRO. The source code is available at https://github.com/Applied-Machine-Learning-Lab/BISTRO.