Abstract:Recent research on large language models (LLMs) has primarily focused on their adaptation and application in specialized domains. The application of LLMs in the medical field is mainly concentrated on tasks such as the automation of medical report generation, summarization, diagnostic reasoning, and question-and-answer interactions between doctors and patients. The challenge of becoming a good teacher is more formidable than that of becoming a good student, and this study pioneers the application of LLMs in the field of medical education. In this work, we investigate the extent to which LLMs can generate medical qualification exam questions and corresponding answers based on few-shot prompts. Utilizing a real-world Chinese dataset of elderly chronic diseases, we tasked the LLMs with generating open-ended questions and answers based on a subset of sampled admission reports across eight widely used LLMs, including ERNIE 4, ChatGLM 4, Doubao, Hunyuan, Spark 4, Qwen, Llama 3, and Mistral. Furthermore, we engaged medical experts to manually evaluate these open-ended questions and answers across multiple dimensions. The study found that LLMs, after using few-shot prompts, can effectively mimic real-world medical qualification exam questions, whereas there is room for improvement in the correctness, evidence-based statements, and professionalism of the generated answers. Moreover, LLMs also demonstrate a decent level of ability to correct and rectify reference answers. Given the immense potential of artificial intelligence in the medical field, the task of generating questions and answers for medical qualification exams aimed at medical students, interns and residents can be a significant focus of future research.
Abstract:Large Language Models (LLMs) have shown remarkable reasoning capabilities on complex tasks, but they still suffer from out-of-date knowledge, hallucinations, and opaque decision-making. In contrast, Knowledge Graphs (KGs) can provide explicit and editable knowledge for LLMs to alleviate these issues. Existing paradigm of KG-augmented LLM manually predefines the breadth of exploration space and requires flawless navigation in KGs. However, this paradigm cannot adaptively explore reasoning paths in KGs based on the question semantics and self-correct erroneous reasoning paths, resulting in a bottleneck in efficiency and effect. To address these limitations, we propose a novel self-correcting adaptive planning paradigm for KG-augmented LLM named Plan-on-Graph (PoG), which first decomposes the question into several sub-objectives and then repeats the process of adaptively exploring reasoning paths, updating memory, and reflecting on the need to self-correct erroneous reasoning paths until arriving at the answer. Specifically, three important mechanisms of Guidance, Memory, and Reflection are designed to work together, to guarantee the adaptive breadth of self-correcting planning for graph reasoning. Finally, extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of PoG.
Abstract:FedProx is a simple yet effective federated learning method that enables model personalization via regularization. Despite remarkable success in practice, a rigorous analysis of how such a regularization provably improves the statistical accuracy of each client's local model hasn't been fully established. Setting the regularization strength heuristically presents a risk, as an inappropriate choice may even degrade accuracy. This work fills in the gap by analyzing the effect of regularization on statistical accuracy, thereby providing a theoretical guideline for setting the regularization strength for achieving personalization. We prove that by adaptively choosing the regularization strength under different statistical heterogeneity, FedProx can consistently outperform pure local training and achieve a nearly minimax-optimal statistical rate. In addition, to shed light on resource allocation, we design an algorithm, provably showing that stronger personalization reduces communication complexity without increasing the computation cost overhead. Finally, our theory is validated on both synthetic and real-world datasets and its generalizability is verified in a non-convex setting.
Abstract:This paper presents a novel approach to credit risk prediction by employing Graph Convolutional Neural Networks (GCNNs) to assess the creditworthiness of borrowers. Leveraging the power of big data and artificial intelligence, the proposed method addresses the challenges faced by traditional credit risk assessment models, particularly in handling imbalanced datasets and extracting meaningful features from complex relationships. The paper begins by transforming raw borrower data into graph-structured data, where borrowers and their relationships are represented as nodes and edges, respectively. A classic subgraph convolutional model is then applied to extract local features, followed by the introduction of a hybrid GCNN model that integrates both local and global convolutional operators to capture a comprehensive representation of node features. The hybrid model incorporates an attention mechanism to adaptively select features, mitigating issues of over-smoothing and insufficient feature consideration. The study demonstrates the potential of GCNNs in improving the accuracy of credit risk prediction, offering a robust solution for financial institutions seeking to enhance their lending decision-making processes.
Abstract:Recent advancements in local Implicit Neural Representation (INR) demonstrate its exceptional capability in handling images at various resolutions. However, frequency discrepancies between high-resolution (HR) and ground-truth images, especially at larger scales, result in significant artifacts and blurring in HR images. This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method aimed at enhancing detailed textures by ensuring spectral consistency throughout both training and inference. During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images, utilizing 2-Dimensional DCT bases and focusing dynamically on challenging frequencies. During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images, which is crucial for the model to generate high-frequency details from LR counterparts. Experimental results show that FreqINR, as a lightweight approach, achieves state-of-the-art performance compared to existing Arbitrary-scale Super-resolution methods and offers notable improvements in computational efficiency. The code for our method will be made publicly available.
Abstract:Recommendation systems, which assist users in discovering their preferred items among numerous options, have served billions of users across various online platforms. Intuitively, users' interactions with items are highly driven by their unchanging inherent intents (e.g., always preferring high-quality items) and changing demand intents (e.g., wanting a T-shirt in summer but a down jacket in winter). However, both types of intents are implicitly expressed in recommendation scenario, posing challenges in leveraging them for accurate intent-aware recommendations. Fortunately, in search scenario, often found alongside recommendation on the same online platform, users express their demand intents explicitly through their query words. Intuitively, in both scenarios, a user shares the same inherent intent and the interactions may be influenced by the same demand intent. It is therefore feasible to utilize the interaction data from both scenarios to reinforce the dual intents for joint intent-aware modeling. But the joint modeling should deal with two problems: 1) accurately modeling users' implicit demand intents in recommendation; 2) modeling the relation between the dual intents and the interactive items. To address these problems, we propose a novel model named Unified Dual-Intents Translation for joint modeling of Search and Recommendation (UDITSR). To accurately simulate users' demand intents in recommendation, we utilize real queries from search data as supervision information to guide its generation. To explicitly model the relation among the triplet <inherent intent, demand intent, interactive item>, we propose a dual-intent translation propagation mechanism to learn the triplet in the same semantic space via embedding translations. Extensive experiments demonstrate that UDITSR outperforms SOTA baselines both in search and recommendation tasks.
Abstract:Predicting genetic mutations from whole slide images is indispensable for cancer diagnosis. However, existing work training multiple binary classification models faces two challenges: (a) Training multiple binary classifiers is inefficient and would inevitably lead to a class imbalance problem. (b) The biological relationships among genes are overlooked, which limits the prediction performance. To tackle these challenges, we innovatively design a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances. BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules: (a) A gene graph whose node features are the genes' linguistic descriptions and the cancer phenotype, with edges modeled by genes' pathway associations and mutation consistencies. (b) A knowledge association module that fuses linguistic and biomedical knowledge into gene priors by transformer-based graph representation learning, capturing the intrinsic relationships between different genes' mutations. BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules: (a) A modality fusion module that firstly fuses the gene priors with critical regions in WSIs and obtains gene-wise mutation logits. (b) A comparative multi-label loss that emphasizes the inherent comparisons among mutation status to enhance the discrimination capabilities. Sufficient experiments on The Cancer Genome Atlas benchmark demonstrate that BPGT outperforms the state-of-the-art.
Abstract:Surface electromyography (sEMG) based gesture recognition offers a natural and intuitive interaction modality for wearable devices. Despite significant advancements in sEMG-based gesture-recognition models, existing methods often suffer from high computational latency and increased energy consumption. Additionally, the inherent instability of sEMG signals, combined with their sensitivity to distribution shifts in real-world settings, compromises model robustness. To tackle these challenges, we propose a novel SpGesture framework based on Spiking Neural Networks, which possesses several unique merits compared with existing methods: (1) Robustness: By utilizing membrane potential as a memory list, we pioneer the introduction of Source-Free Domain Adaptation into SNN for the first time. This enables SpGesture to mitigate the accuracy degradation caused by distribution shifts. (2) High Accuracy: With a novel Spiking Jaccard Attention, SpGesture enhances the SNNs' ability to represent sEMG features, leading to a notable rise in system accuracy. To validate SpGesture's performance, we collected a new sEMG gesture dataset which has different forearm postures, where SpGesture achieved the highest accuracy among the baselines ($89.26\%$). Moreover, the actual deployment on the CPU demonstrated a system latency below 100ms, well within real-time requirements. This impressive performance showcases SpGesture's potential to enhance the applicability of sEMG in real-world scenarios. The code is available at https://anonymous.4open.science/r/SpGesture.
Abstract:For visual content generation, discrepancies between user intentions and the generated content have been a longstanding problem. This discrepancy arises from two main factors. First, user intentions are inherently complex, with subtle details not fully captured by input prompts. The absence of such details makes it challenging for generative models to accurately reflect the intended meaning, leading to a mismatch between the desired and generated output. Second, generative models trained on visual-label pairs lack the comprehensive knowledge to accurately represent all aspects of the input data in their generated outputs. To address these challenges, we propose a knowledge-enhanced iterative refinement framework for visual content generation. We begin by analyzing and identifying the key challenges faced by existing generative models. Then, we introduce various knowledge sources, including human insights, pre-trained models, logic rules, and world knowledge, which can be leveraged to address these challenges. Furthermore, we propose a novel visual generation framework that incorporates a knowledge-based feedback module to iteratively refine the generation process. This module gradually improves the alignment between the generated content and user intentions. We demonstrate the efficacy of the proposed framework through preliminary results, highlighting the potential of knowledge-enhanced generative models for intention-aligned content generation.
Abstract:Gesture recognition based on surface electromyography (sEMG) has been gaining importance in many 3D Interactive Scenes. However, sEMG is easily influenced by various forms of noise in real-world environments, leading to challenges in providing long-term stable interactions through sEMG. Existing methods often struggle to enhance model noise resilience through various predefined data augmentation techniques. In this work, we revisit the problem from a short term enhancement perspective to improve precision and robustness against various common noisy scenarios with learnable denoise using sEMG intrinsic pattern information and sliding-window attention. We propose a Short Term Enhancement Module(STEM) which can be easily integrated with various models. STEM offers several benefits: 1) Learnable denoise, enabling noise reduction without manual data augmentation; 2) Scalability, adaptable to various models; and 3) Cost-effectiveness, achieving short-term enhancement through minimal weight-sharing in an efficient attention mechanism. In particular, we incorporate STEM into a transformer, creating the Short Term Enhanced Transformer (STET). Compared with best-competing approaches, the impact of noise on STET is reduced by more than 20%. We also report promising results on both classification and regression datasets and demonstrate that STEM generalizes across different gesture recognition tasks.