Multimodal Language Models have gained significant traction for their ability to process diverse input data types and generate coherent, contextually relevant outputs across various applications. While supervised fine-tuning (SFT) has been the predominant approach to enhance MLLM capabilities in task-specific optimization, it often falls short in fostering crucial generalized reasoning abilities. Despite the potential of reinforcement learning (RL) to address these limitations, it faces two issues: (1) its generalized capabilities in multimodal tasks remain underexplored. (2) its training constraints such as constant Kullback-Leibler or clamp strategy easily lead to suboptimal bottleneck. To adress these issues, we introduce OThink-MR1, a framework that extends RL to MLLMs, enabling them to achieve deeper understanding and reasoning across multimodal tasks. We design a dynamic Kullback-Leibler strategy that significantly enhances RL performance, surpassing SFT in same-task evaluations. Also, we are the first to reveal that RL exhibits remarkable cross-task generalization capabilities, which shows that models post-trained with RL on one multimodal task can be effectively transfered to another tasks. Finally, extensive experiments demonstrate the great reasoning ability of our proposed OThink-MR1.