Abstract:Significant achievements in personalization of diffusion models have been witnessed. Conventional tuning-free methods mostly encode multiple reference images by averaging their image embeddings as the injection condition, but such an image-independent operation cannot perform interaction among images to capture consistent visual elements within multiple references. Although the tuning-based Low-Rank Adaptation (LoRA) can effectively extract consistent elements within multiple images through the training process, it necessitates specific finetuning for each distinct image group. This paper introduces EasyRef, a novel plug-and-play adaptation method that enables diffusion models to be conditioned on multiple reference images and the text prompt. To effectively exploit consistent visual elements within multiple images, we leverage the multi-image comprehension and instruction-following capabilities of the multimodal large language model (MLLM), prompting it to capture consistent visual elements based on the instruction. Besides, injecting the MLLM's representations into the diffusion process through adapters can easily generalize to unseen domains, mining the consistent visual elements within unseen data. To mitigate computational costs and enhance fine-grained detail preservation, we introduce an efficient reference aggregation strategy and a progressive training scheme. Finally, we introduce MRBench, a new multi-reference image generation benchmark. Experimental results demonstrate EasyRef surpasses both tuning-free methods like IP-Adapter and tuning-based methods like LoRA, achieving superior aesthetic quality and robust zero-shot generalization across diverse domains.
Abstract:Recent generative models based on score matching and flow matching have significantly advanced generation tasks, but their potential in discriminative tasks remains underexplored. Previous approaches, such as generative classifiers, have not fully leveraged the capabilities of these models for discriminative tasks due to their intricate designs. We propose Pretrained Reversible Generation (PRG), which extracts unsupervised representations by reversing the generative process of a pretrained continuous flow model. PRG effectively reuses unsupervised generative models, leveraging their high capacity to serve as robust and generalizable feature extractors for downstream tasks. Our method consistently outperforms prior approaches across multiple benchmarks, achieving state-of-the-art performance among generative model-based methods, including 78\% top-1 accuracy on ImageNet. Extensive ablation studies further validate the effectiveness of our approach.
Abstract:In the realm of education, both independent learning and group learning are esteemed as the most classic paradigms. The former allows learners to self-direct their studies, while the latter is typically characterized by teacher-directed scenarios. Recent studies in the field of intelligent education have leveraged deep temporal models to trace the learning process, capturing the dynamics of students' knowledge states, and have achieved remarkable performance. However, existing approaches have primarily focused on modeling the independent learning process, with the group learning paradigm receiving less attention. Moreover, the reciprocal effect between the two learning processes, especially their combined potential to foster holistic student development, remains inadequately explored. To this end, in this paper, we propose RIGL, a unified Reciprocal model to trace knowledge states at both the individual and group levels, drawing from the Independent and Group Learning processes. Specifically, we first introduce a time frame-aware reciprocal embedding module to concurrently model both student and group response interactions across various time frames. Subsequently, we employ reciprocal enhanced learning modeling to fully exploit the comprehensive and complementary information between the two behaviors. Furthermore, we design a relation-guided temporal attentive network, comprised of dynamic graph modeling coupled with a temporal self-attention mechanism. It is used to delve into the dynamic influence of individual and group interactions throughout the learning processes. Conclusively, we introduce a bias-aware contrastive learning module to bolster the stability of the model's training. Extensive experiments on four real-world educational datasets clearly demonstrate the effectiveness of the proposed RIGL model.
Abstract:The consistency model (CM) has recently made significant progress in accelerating the generation of diffusion models. However, its application to high-resolution, text-conditioned image generation in the latent space (a.k.a., LCM) remains unsatisfactory. In this paper, we identify three key flaws in the current design of LCM. We investigate the reasons behind these limitations and propose the Phased Consistency Model (PCM), which generalizes the design space and addresses all identified limitations. Our evaluations demonstrate that PCM significantly outperforms LCM across 1--16 step generation settings. While PCM is specifically designed for multi-step refinement, it achieves even superior or comparable 1-step generation results to previously state-of-the-art specifically designed 1-step methods. Furthermore, we show that PCM's methodology is versatile and applicable to video generation, enabling us to train the state-of-the-art few-step text-to-video generator. More details are available at https://g-u-n.github.io/projects/pcm/.
Abstract:As the key component in multimodal large language models (MLLMs), the ability of the visual encoder greatly affects MLLM's understanding on diverse image content. Although some large-scale pretrained vision encoders such as vision encoders in CLIP and DINOv2 have brought promising performance, we found that there is still no single vision encoder that can dominate various image content understanding, e.g., the CLIP vision encoder leads to outstanding results on general image understanding but poor performance on document or chart content. To alleviate the bias of CLIP vision encoder, we first delve into the inherent behavior of different pre-trained vision encoders and then propose the MoVA, a powerful and novel MLLM, adaptively routing and fusing task-specific vision experts with a coarse-to-fine mechanism. In the coarse-grained stage, we design a context-aware expert routing strategy to dynamically select the most suitable vision experts according to the user instruction, input image, and expertise of vision experts. This benefits from the powerful model function understanding ability of the large language model (LLM) equipped with expert-routing low-rank adaptation (LoRA). In the fine-grained stage, we elaborately conduct the mixture-of-vision-expert adapter (MoV-Adapter) to extract and fuse task-specific knowledge from various experts. This coarse-to-fine paradigm effectively leverages representations from experts based on multimodal context and model expertise, further enhancing the generalization ability. We conduct extensive experiments to evaluate the effectiveness of the proposed approach. Without any bells and whistles, MoVA can achieve significant performance gains over current state-of-the-art methods in a wide range of challenging multimodal benchmarks. Codes and models will be available at https://github.com/TempleX98/MoVA.
Abstract:In the contemporary era of widespread online recruitment, resume understanding has been widely acknowledged as a fundamental and crucial task, which aims to extract structured information from resume documents automatically. Compared to the traditional rule-based approaches, the utilization of recently proposed pre-trained document understanding models can greatly enhance the effectiveness of resume understanding. The present approaches have, however, disregarded the hierarchical relations within the structured information presented in resumes, and have difficulty parsing resumes in an efficient manner. To this end, in this paper, we propose a novel model, namely ERU, to achieve efficient resume understanding. Specifically, we first introduce a layout-aware multi-modal fusion transformer for encoding the segments in the resume with integrated textual, visual, and layout information. Then, we design three self-supervised tasks to pre-train this module via a large number of unlabeled resumes. Next, we fine-tune the model with a multi-granularity sequence labeling task to extract structured information from resumes. Finally, extensive experiments on a real-world dataset clearly demonstrate the effectiveness of ERU.
Abstract:Classifier-Free Guidance (CFG) has been widely used in text-to-image diffusion models, where the CFG scale is introduced to control the strength of text guidance on the whole image space. However, we argue that a global CFG scale results in spatial inconsistency on varying semantic strengths and suboptimal image quality. To address this problem, we present a novel approach, Semantic-aware Classifier-Free Guidance (S-CFG), to customize the guidance degrees for different semantic units in text-to-image diffusion models. Specifically, we first design a training-free semantic segmentation method to partition the latent image into relatively independent semantic regions at each denoising step. In particular, the cross-attention map in the denoising U-net backbone is renormalized for assigning each patch to the corresponding token, while the self-attention map is used to complete the semantic regions. Then, to balance the amplification of diverse semantic units, we adaptively adjust the CFG scales across different semantic regions to rescale the text guidance degrees into a uniform level. Finally, extensive experiments demonstrate the superiority of S-CFG over the original CFG strategy on various text-to-image diffusion models, without requiring any extra training cost. our codes are available at https://github.com/SmilesDZgk/S-CFG.
Abstract:Diffusion models have demonstrated great success in the field of text-to-image generation. However, alleviating the misalignment between the text prompts and images is still challenging. The root reason behind the misalignment has not been extensively investigated. We observe that the misalignment is caused by inadequate token attention activation. We further attribute this phenomenon to the diffusion model's insufficient condition utilization, which is caused by its training paradigm. To address the issue, we propose CoMat, an end-to-end diffusion model fine-tuning strategy with an image-to-text concept matching mechanism. We leverage an image captioning model to measure image-to-text alignment and guide the diffusion model to revisit ignored tokens. A novel attribute concentration module is also proposed to address the attribute binding problem. Without any image or human preference data, we use only 20K text prompts to fine-tune SDXL to obtain CoMat-SDXL. Extensive experiments show that CoMat-SDXL significantly outperforms the baseline model SDXL in two text-to-image alignment benchmarks and achieves start-of-the-art performance.
Abstract:Collaborative filtering methods based on graph neural networks (GNNs) have witnessed significant success in recommender systems (RS), capitalizing on their ability to capture collaborative signals within intricate user-item relationships via message-passing mechanisms. However, these GNN-based RS inadvertently introduce excess linear correlation between user and item embeddings, contradicting the goal of providing personalized recommendations. While existing research predominantly ascribes this flaw to the over-smoothing problem, this paper underscores the critical, often overlooked role of the over-correlation issue in diminishing the effectiveness of GNN representations and subsequent recommendation performance. Up to now, the over-correlation issue remains unexplored in RS. Meanwhile, how to mitigate the impact of over-correlation while preserving collaborative filtering signals is a significant challenge. To this end, this paper aims to address the aforementioned gap by undertaking a comprehensive study of the over-correlation issue in graph collaborative filtering models. Firstly, we present empirical evidence to demonstrate the widespread prevalence of over-correlation in these models. Subsequently, we dive into a theoretical analysis which establishes a pivotal connection between the over-correlation and over-smoothing issues. Leveraging these insights, we introduce the Adaptive Feature De-correlation Graph Collaborative Filtering (AFDGCF) framework, which dynamically applies correlation penalties to the feature dimensions of the representation matrix, effectively alleviating both over-correlation and over-smoothing issues. The efficacy of the proposed framework is corroborated through extensive experiments conducted with four representative graph collaborative filtering models across four publicly available datasets.
Abstract:Video outpainting is a challenging task, aiming at generating video content outside the viewport of the input video while maintaining inter-frame and intra-frame consistency. Existing methods fall short in either generation quality or flexibility. We introduce MOTIA Mastering Video Outpainting Through Input-Specific Adaptation, a diffusion-based pipeline that leverages both the intrinsic data-specific patterns of the source video and the image/video generative prior for effective outpainting. MOTIA comprises two main phases: input-specific adaptation and pattern-aware outpainting. The input-specific adaptation phase involves conducting efficient and effective pseudo outpainting learning on the single-shot source video. This process encourages the model to identify and learn patterns within the source video, as well as bridging the gap between standard generative processes and outpainting. The subsequent phase, pattern-aware outpainting, is dedicated to the generalization of these learned patterns to generate outpainting outcomes. Additional strategies including spatial-aware insertion and noise travel are proposed to better leverage the diffusion model's generative prior and the acquired video patterns from source videos. Extensive evaluations underscore MOTIA's superiority, outperforming existing state-of-the-art methods in widely recognized benchmarks. Notably, these advancements are achieved without necessitating extensive, task-specific tuning.