Abstract:Computerized Adaptive Testing (CAT) aims to select the most appropriate questions based on the examinee's ability and is widely used in online education. However, existing CAT systems often lack initial understanding of the examinee's ability, requiring random probing questions. This can lead to poorly matched questions, extending the test duration and negatively impacting the examinee's mindset, a phenomenon referred to as the Cold Start with Insufficient Prior (CSIP) task. This issue occurs because CAT systems do not effectively utilize the abundant prior information about the examinee available from other courses on online platforms. These response records, due to the commonality of cognitive states across different knowledge domains, can provide valuable prior information for the target domain. However, no prior work has explored solutions for the CSIP task. In response to this gap, we propose Diffusion Cognitive States TransfeR Framework (DCSR), a novel domain transfer framework based on Diffusion Models (DMs) to address the CSIP task. Specifically, we construct a cognitive state transition bridge between domains, guided by the common cognitive states of examinees, encouraging the model to reconstruct the initial ability state in the target domain. To enrich the expressive power of the generated data, we analyze the causal relationships in the generation process from a causal perspective. Redundant and extraneous cognitive states can lead to limited transfer and negative transfer effects. Our DCSR can seamlessly apply the generated initial ability states in the target domain to existing question selection algorithms, thus improving the cold start performance of the CAT system. Extensive experiments conducted on five real-world datasets demonstrate that DCSR significantly outperforms existing baseline methods in addressing the CSIP task.
Abstract:Existing graph learning-based cognitive diagnosis (CD) methods have made relatively good results, but their student, exercise, and concept representations are learned and exchanged in an implicit unified graph, which makes the interaction-agnostic exercise and concept representations be learned poorly, failing to provide high robustness against noise in students' interactions. Besides, lower-order exercise latent representations obtained in shallow layers are not well explored when learning the student representation. To tackle the issues, this paper suggests a meta multigraph-assisted disentangled graph learning framework for CD (DisenGCD), which learns three types of representations on three disentangled graphs: student-exercise-concept interaction, exercise-concept relation, and concept dependency graphs, respectively. Specifically, the latter two graphs are first disentangled from the interaction graph. Then, the student representation is learned from the interaction graph by a devised meta multigraph learning module; multiple learnable propagation paths in this module enable current student latent representation to access lower-order exercise latent representations, which can lead to more effective nad robust student representations learned; the exercise and concept representations are learned on the relation and dependency graphs by graph attention modules. Finally, a novel diagnostic function is devised to handle three disentangled representations for prediction. Experiments show better performance and robustness of DisenGCD than state-of-the-art CD methods and demonstrate the effectiveness of the disentangled learning framework and meta multigraph module. The source code is available at \textcolor{red}{\url{https://github.com/BIMK/Intelligent-Education/tree/main/DisenGCD}}.
Abstract:The rapid development of online recruitment platforms has created unprecedented opportunities for job seekers while concurrently posing the significant challenge of quickly and accurately pinpointing positions that align with their skills and preferences. Job recommendation systems have significantly alleviated the extensive search burden for job seekers by optimizing user engagement metrics, such as clicks and applications, thus achieving notable success. In recent years, a substantial amount of research has been devoted to developing effective job recommendation models, primarily focusing on text-matching based and behavior modeling based methods. While these approaches have realized impressive outcomes, it is imperative to note that research on the explainability of recruitment recommendations remains profoundly unexplored. To this end, in this paper, we propose DISCO, a hierarchical Disentanglement based Cognitive diagnosis framework, aimed at flexibly accommodating the underlying representation learning model for effective and interpretable job recommendations. Specifically, we first design a hierarchical representation disentangling module to explicitly mine the hierarchical skill-related factors implied in hidden representations of job seekers and jobs. Subsequently, we propose level-aware association modeling to enhance information communication and robust representation learning both inter- and intra-level, which consists of the interlevel knowledge influence module and the level-wise contrastive learning. Finally, we devise an interaction diagnosis module incorporating a neural diagnosis function for effectively modeling the multi-level recruitment interaction process between job seekers and jobs, which introduces the cognitive measurement theory.
Abstract:In the realm of education, both independent learning and group learning are esteemed as the most classic paradigms. The former allows learners to self-direct their studies, while the latter is typically characterized by teacher-directed scenarios. Recent studies in the field of intelligent education have leveraged deep temporal models to trace the learning process, capturing the dynamics of students' knowledge states, and have achieved remarkable performance. However, existing approaches have primarily focused on modeling the independent learning process, with the group learning paradigm receiving less attention. Moreover, the reciprocal effect between the two learning processes, especially their combined potential to foster holistic student development, remains inadequately explored. To this end, in this paper, we propose RIGL, a unified Reciprocal model to trace knowledge states at both the individual and group levels, drawing from the Independent and Group Learning processes. Specifically, we first introduce a time frame-aware reciprocal embedding module to concurrently model both student and group response interactions across various time frames. Subsequently, we employ reciprocal enhanced learning modeling to fully exploit the comprehensive and complementary information between the two behaviors. Furthermore, we design a relation-guided temporal attentive network, comprised of dynamic graph modeling coupled with a temporal self-attention mechanism. It is used to delve into the dynamic influence of individual and group interactions throughout the learning processes. Conclusively, we introduce a bias-aware contrastive learning module to bolster the stability of the model's training. Extensive experiments on four real-world educational datasets clearly demonstrate the effectiveness of the proposed RIGL model.
Abstract:Computerized Adaptive Testing (CAT) provides an efficient and tailored method for assessing the proficiency of examinees, by dynamically adjusting test questions based on their performance. Widely adopted across diverse fields like education, healthcare, sports, and sociology, CAT has revolutionized testing practices. While traditional methods rely on psychometrics and statistics, the increasing complexity of large-scale testing has spurred the integration of machine learning techniques. This paper aims to provide a machine learning-focused survey on CAT, presenting a fresh perspective on this adaptive testing method. By examining the test question selection algorithm at the heart of CAT's adaptivity, we shed light on its functionality. Furthermore, we delve into cognitive diagnosis models, question bank construction, and test control within CAT, exploring how machine learning can optimize these components. Through an analysis of current methods, strengths, limitations, and challenges, we strive to develop robust, fair, and efficient CAT systems. By bridging psychometric-driven CAT research with machine learning, this survey advocates for a more inclusive and interdisciplinary approach to the future of adaptive testing.
Abstract:Cognitive diagnosis is a crucial task in computational education, aimed at evaluating students' proficiency levels across various knowledge concepts through exercises. Current models, however, primarily rely on students' answered exercises, neglecting the complex and rich information contained in un-interacted exercises. While recent research has attempted to leverage the data within un-interacted exercises linked to interacted knowledge concepts, aiming to address the long-tail issue, these studies fail to fully explore the informative, un-interacted exercises related to broader knowledge concepts. This oversight results in diminished performance when these models are applied to comprehensive datasets. In response to this gap, we present the Collaborative-aware Mixed Exercise Sampling (CMES) framework, which can effectively exploit the information present in un-interacted exercises linked to un-interacted knowledge concepts. Specifically, we introduce a novel universal sampling module where the training samples comprise not merely raw data slices, but enhanced samples generated by combining weight-enhanced attention mixture techniques. Given the necessity of real response labels in cognitive diagnosis, we also propose a ranking-based pseudo feedback module to regulate students' responses on generated exercises. The versatility of the CMES framework bolsters existing models and improves their adaptability. Finally, we demonstrate the effectiveness and interpretability of our framework through comprehensive experiments on real-world datasets.
Abstract:Knowledge tracing (KT) aims to trace students' knowledge states by predicting whether students answer correctly on exercises. Despite the excellent performance of existing Transformer-based KT approaches, they are criticized for the manually selected input features for fusion and the defect of single global context modelling to directly capture students' forgetting behavior in KT, when the related records are distant from the current record in terms of time. To address the issues, this paper first considers adding convolution operations to the Transformer to enhance its local context modelling ability used for students' forgetting behavior, then proposes an evolutionary neural architecture search approach to automate the input feature selection and automatically determine where to apply which operation for achieving the balancing of the local/global context modelling. In the search space, the original global path containing the attention module in Transformer is replaced with the sum of a global path and a local path that could contain different convolutions, and the selection of input features is also considered. To search the best architecture, we employ an effective evolutionary algorithm to explore the search space and also suggest a search space reduction strategy to accelerate the convergence of the algorithm. Experimental results on the two largest and most challenging education datasets demonstrate the effectiveness of the architecture found by the proposed approach.
Abstract:Cognitive diagnosis plays a vital role in modern intelligent education platforms to reveal students' proficiency in knowledge concepts for subsequent adaptive tasks. However, due to the requirement of high model interpretability, existing manually designed cognitive diagnosis models hold too simple architectures to meet the demand of current intelligent education systems, where the bias of human design also limits the emergence of effective cognitive diagnosis models. In this paper, we propose to automatically design novel cognitive diagnosis models by evolutionary multi-objective neural architecture search (NAS). Specifically, we observe existing models can be represented by a general model handling three given types of inputs and thus first design an expressive search space for the NAS task in cognitive diagnosis. Then, we propose multi-objective genetic programming (MOGP) to explore the NAS task's search space by maximizing model performance and interpretability. In the MOGP design, each architecture is transformed into a tree architecture and encoded by a tree for easy optimization, and a tailored genetic operation based on four sub-genetic operations is devised to generate offspring effectively. Besides, an initialization strategy is also suggested to accelerate the convergence by evolving half of the population from existing models' variants. Experiments on two real-world datasets demonstrate that the cognitive diagnosis models searched by the proposed approach exhibit significantly better performance than existing models and also hold as good interpretability as human-designed models.
Abstract:Accurate segmentation of colonoscopic polyps is considered a fundamental step in medical image analysis and surgical interventions. Many recent studies have made improvements based on the encoder-decoder framework, which can effectively segment diverse polyps. Such improvements mainly aim to enhance local features by using global features and applying attention methods. However, relying only on the global information of the final encoder block can result in losing local regional features in the intermediate layer. In addition, determining the edges between benign regions and polyps could be a challenging task. To address the aforementioned issues, we propose a novel separated edge-guidance transformer (SegT) network that aims to build an effective polyp segmentation model. A transformer encoder that learns a more robust representation than existing CNN-based approaches was specifically applied. To determine the precise segmentation of polyps, we utilize a separated edge-guidance module consisting of separator and edge-guidance blocks. The separator block is a two-stream operator to highlight edges between the background and foreground, whereas the edge-guidance block lies behind both streams to strengthen the understanding of the edge. Lastly, an innovative cascade fusion module was used and fused the refined multi-level features. To evaluate the effectiveness of SegT, we conducted experiments with five challenging public datasets, and the proposed model achieved state-of-the-art performance.
Abstract:The cold start problem in recommender systems is a long-standing challenge, which requires recommending to new users (items) based on attributes without any historical interaction records. In these recommendation systems, warm users (items) have privileged collaborative signals of interaction records compared to cold start users (items), and these Collaborative Filtering (CF) signals are shown to have competing performance for recommendation. Many researchers proposed to learn the correlation between collaborative signal embedding space and the attribute embedding space to improve the cold start recommendation, in which user and item categorical attributes are available in many online platforms. However, the cold start recommendation is still limited by two embedding spaces modeling and simple assumptions of space transformation. As user-item interaction behaviors and user (item) attributes naturally form a heterogeneous graph structure, in this paper, we propose a privileged graph distillation model~(PGD). The teacher model is composed of a heterogeneous graph structure for warm users and items with privileged CF links. The student model is composed of an entity-attribute graph without CF links. Specifically, the teacher model can learn better embeddings of each entity by injecting complex higher-order relationships from the constructed heterogeneous graph. The student model can learn the distilled output with privileged CF embeddings from the teacher embeddings. Our proposed model is generally applicable to different cold start scenarios with new user, new item, or new user-new item. Finally, extensive experimental results on the real-world datasets clearly show the effectiveness of our proposed model on different types of cold start problems, with average $6.6\%, 5.6\%, $ and $17.1\%$ improvement over state-of-the-art baselines on three datasets, respectively.